Study of Resonance Crossing in FFAG

Contents

- 1. Crossing experiment at PoP FFAG
- 2. Crossing experiment at HIMAC synchrotron
- 3. Summary

Masamitsu Aiba (KEK)

Introduction

- FFAG accelerator:
 - For proton driver
 - For muon acceleration
- Resonance crossing
 - In scaling FFAG: tune variation due to imperfection of scaling
 - In non-scaling FFAG: tune variation in wide range
- Dynamics of resonance crossing is important
 Experimental study at PoP FFAG and HIMAC

Experiment at PoP FFAG

PoP FFAG: radial sector type scaling FFAG

Parameter list

sector number	8 (DFD triplet)
k value	2.5
kinetic energy	50-500keV
fmagnetic field	0.14-0.32T(F)
	0.04-0.13T(D)
average radius	0.81-1.14m
betatron tune	2.22-2.16(Hor.)
	1.26-1.23(Ver.)
revolution freq.	0.61-1.40MHz
RF voltage	5kVpp

Resonance crossing with various driving term and crossing speed

Remodeling magnets

4mm iron plates

Crossing third order resonance during acceleration

Driving term

Driving term with COD

Feed Down: $O(x+D)^3 = O(x^3 + 3x^2D + 3xD^2 + D^3)$

Controlling COD

Driving term is varied and controlled

Beam measurement

Beam scraping & intensity measurement

Particle distribution in beam emittance was measured before and after crossing.

Fast crossing

Energy gain 1.6kV/turn = $\Delta v_x 1.4 \times 10^{-3}$ Current error -2%

Scraping data

110 130 150 (keV) BeforeCrossingAfter

Particle distribution in beam emittance

Fast crossing: no clear signal of a damage due to crossing

Slow crossing

Energy gain 0.13kV/turn = $\Delta v_x 1.2 \times 10^{-4}$ Current error -2%

Scraping data

Slow crossing: a part of beam is transported to large amplitude

"Particle trapping model" Reference: A.W.Chao and M.Month, NIM 121, P.129 (1974) **"PARTICLE TRAPPING DURING PASSAGE** THROUGH A HIGH-ORDER NONLINEAR RESONANCE" Phase space topology during crossing third order resonance

(a) ξ=0.01 (d) ξ=0

Assuming:

nonlinear detuning (octupole) driving term (sextupole)

Distance from resonance

$$\xi \propto \frac{1}{3}p - \nu$$

This model supports the experimental result.

 $lpha^{1/2}$

Trapping efficiency

Trapping efficiency for third order resonance

$$P_T = \frac{A}{\pi \alpha_s} \exp(-\alpha_1) \qquad \alpha_s = \begin{cases} \alpha_1, & \text{if } \alpha_1 > 1, \\ 1, & \text{if } \alpha_1 < 1 \end{cases}$$

 α_s : the beam emittance of island center

 $A \approx \frac{\pi^2}{\sqrt{2}} \kappa^{-\frac{1}{2}} \alpha_s^{\frac{3}{4}}$: the total area of islands

$$\alpha_1 = \left(\frac{\varepsilon}{4\pi\Delta_{NL}\Delta_e}\right)^{\frac{2}{3}}$$
: the adiabatic parameter

The adiabatic parameter means a speed of islands moving during crossing.

Crossing speed: \mathcal{E} Nonlinear detuning: $B_0 = \frac{\langle \beta \rangle}{16\pi v} \int_0^{2\pi} d\theta O(\theta)$ Driving term: $|A_p| = \frac{\langle \beta \rangle^{\frac{1}{2}}}{8\pi v} \int_0^{2\pi} d\theta e^{-ip\theta} S(\theta)$ Linear tune shift: $\Delta_L = \frac{1}{3}p - v$ Nonlinear tune shift: $\Delta_{NL} = -12B_0a_0$ Excitation width: $\Delta_e = -3|A_p|a_0^{\frac{1}{2}}$ $\kappa \equiv 3\Delta_{NL}/4\Delta_e$, $\xi \equiv 3\Delta_L/2\Delta_e$

> *Assuming k>>1 to derive the trapping efficiency

Comparison of trapping efficiencies

Efficiency in experiment

Trapping efficiencies

The experiment results are consistent to simulations.

Criterion to avoid trapping

Adiabatic parameter more than 7 will be harmless.

Crossing experiment at HIMAC

Gas Sheet Injection SXDr1 SXH for all SP Monitor SXFr BM: Dipole Magnet QF: Focusing Quadrupole Magnet QD: Defocusing Quadrupole Magnet SXFr,SXDr: Sextupole Magnet for Separatrix Production SXH: Sextupole Magnet for Chromaticity Correction BMPf: Bump Magnet for Injection BMP: Bump Magnet for Extraction SM: Septum Magnet ESI: Electrostatic Inflector ESD: Electrostatic Deflector RF: RF Cavity HIMAC Synchrotron Slow Extraction **SXF**r

Flat bottom operation parameter	
circumference	129.6m
super period / cell	6 / 1 2
particle	carbon 6+
inj. energy	6MeV/u
operation point	(3.69, 2.13)

Crossing:

Varying quadrupole strength Driving term: SXFr*2 sextupole Nonlinear detuning: Second order effect of SXH sextupole

Crossing 3vx=11 in both direction Observing beam profile with Gas Sheet Monitor directly

Crossing in a direction of tune decreasing Beam profiles during crossing

Crossing in a direction of tune increasing

Beam profiles during crossing

Simulation – tune decreasing

Simulation – tune increasing

Difference due to crossing direction

The effect due to crossing depends upon crossing direction.

In one direction: "particle trapping" In other direction: "emittance growth"

Crossing without sextupoles

Beam profiles during crossing (tune decreasing)

"Particle trapping" occurred even when all magnets are linear elements.

Possible source for nonlinear components: allowed poles, fringing field ...

Crossing speed: 4.6×10^{-6} Nonlinear detuning: 0 m^{-1} Driving term: $0 \text{ m}^{-1/2}$

Summary

- Experiment at PoP FFAG
 - "Particle trapping" due to resonance crossing was observed.
 - Trapping efficiency are understood qualitatively.
 - Adiabatic parameter more than 7 was harmless.
- Experiment at HIMAC
 - Difference due to crossing direction was shown.
 - Even sextupoles are not excited, the effect of crossing was "particle trapping".

Crossing without sextupoles

Normalized beam profiles during crossing

Crossing speed: 4.6×10^{-6} Nonlinear detuning: 0 m^{-1} Driving term: $0 \text{ m}^{-1/2}$