Is B_s Production by Neutrinos Interesting?

(revised)

Daniel M. Kaplan and Nickolas Solomey

Transforming Lives. Inventing the Future. www.iit.edu

NuFact05 LNF-Frascati 22 June 2005

Outline:

- 1. CKM matrix
- 2. B_s mixing and CP violation
- 3. B_s production and tagging
- 4. B_s production by neutrinos
- 5. Further issues

• Quark mixing described in SM by unitary matrix V:

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

• Quark mixing described in SM by unitary matrix V:

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

• Unitarity of V implies triangle relations, e.g., $V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$:

* Note: not scale drawings – all triangles in fact have equal areas

• Quark mixing described in SM by unitary matrix V:

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

• Unitarity of V implies triangle relations, e.g., $V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$:

* Note: not scale drawings – all triangles in fact have equal areas

• Quark mixing described in SM by unitary matrix V:

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

• Unitarity of V implies triangle relations, e.g., $V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$:

• Sides determine *B* decays and mixing, angles determine *B* CP violation

• Quark mixing described in SM by unitary matrix V:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Unitarity of V implies triangle relations, e.g., $V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$:

- Sides determine *B* decays and mixing, angles determine *B* CP violation
- ⇒ If CKM phase is origin of CP violation, angles & sides will be consistent, and angles measured in different processes will have the same values

Testing SM Mixing and CP

• Note angle γ and its opposite side are challenging to measure:

Normalized unitarity triangle on Wolfenstein-parameter (ρ – η) plane

Testing SM Mixing and CP

• Note angle γ and its opposite side are challenging to measure:

Normalized unitarity triangle on Wolfenstein-parameter (ρ – η) plane

• Ratio V_{td}/V_{ts} best measured by comparing $B_d \& B_s$ mixing:

Testing SM Mixing and CP

• Note angle γ and its opposite side are challenging to measure:

 \rightarrow various theoretical uncertainties cancel in the ratio $\Delta m_d / \Delta m_s$

Testing SM Mixing and

• Angle γ measurable using CP asymmetry of tagged $B_s \rightarrow D_s^{\pm} K^{\pm}$ events:

Figure 1.13: Two diagrams for $\overline{B}_s^o \to D_s^{\pm} K^{\mp}$.

Note BTeV Proposal Update (2002) $\rightarrow \Delta(\sin \gamma) = \pm 11.5^{\circ}$ by this method

• Angle χ measurable in $B_s \rightarrow J/\psi \eta$, $J/\psi \eta'$ sb $\chi \sim V_{ts} V_{tt}$

• Various other B_s decays also important: $B_s \rightarrow K^+ K^-$, $B_s \rightarrow D_s^+ \pi^- \dots$

How to Study B_s?

• Impractical in e^+e^-B factory

 \rightarrow would need $J^{PC} = 1^{--}$ resonance with large *BR* into B_s

but $\Upsilon(5S)$ cross section is small:

and

 $-BR(\Upsilon(5S) \rightarrow B_s)$ unknown,

but,

from CLEO [Chul Hi Park, PhD thesis UMI-91-21403-mc, Oct 1990]:

"We extract an upper limit of 30% on the B_s fraction in Y(5S) decays using the measured D_s^+ ."

How to Study B_s?

- Might be done in hadron collider (CDF, D0, <u>LHCb</u>)
 - but tagging efficiency $\ll 1$

e.g. BTeV study (BTeV Proposal Update, 2002) $\rightarrow \varepsilon D^2 = 13\%$

[sum of εD^2 for

- Same Side Tagging (Kaon for B_s and Pion for B^0)
- Away Side Kaon Tagging
- Away Side Lepton Tagging
- Jet Charge Tag]
- Remains to be seen how well this works in practice
- Nevertheless, e.g. LHCb hope to measure Δm_s to ~ 0.01 ps⁻¹ if $\Delta m_s \leq 70$ ps⁻¹

• Neutrino production of B_s has unique advantage...

"Perfect" flavor tagging via flavor-specific production mechanism:

 \Rightarrow v beam makes B_s and \overline{v} beam makes $\overline{B_s}$

 \rightarrow A high-energy Neutrino Factory makes pure B_s and $\overline{B_s}$ tagged by $\mu^{\overline{+}}/e^{\overline{+}}$

• Neutrino production of B_s has unique advantage...

- Neutrino production of B_s has unique advantage...
 - ... but at what cost in rate???

• Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$

 $\Rightarrow E_v > 20 \,\text{GeV} - \text{say } E_v \sim 50 \,\text{GeV}$

• Cross-section guestimate: $\sigma(\nu N \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$?

- Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$ $\Rightarrow E_v > 20 \text{ GeV} - \text{say } E_v \sim 50 \text{ GeV}$
- Cross-section guestimate: $\sigma(vN \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$?
 - cf. D. Son *et al.* (FNAL 15 ft Bubble Chamber), Phys. Rev. D 28, 2129 (1983):

$$\sigma(\nu n \rightarrow \mu^{-} \Lambda K^{+}) = (5.5 \pm 1.3 \pm 1.1) \times 10^{-40} \,\mathrm{cm}^{2}$$

and
$$\sigma(\nu n \rightarrow \mu^{-} \Lambda_{c} X) \approx (65 \pm 30) \times 10^{-40} \,\mathrm{cm}^{2}$$
$$F_{\nu} > 10 \,\mathrm{GeV}$$

- Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$ $\Rightarrow E_v > 20 \text{ GeV} - \text{say } E_v \sim 50 \text{ GeV}$
- Cross-section guestimate: $\sigma(vN \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$?
 - cf. D. Son *et al.* (FNAL 15 ft Bubble Chamber), Phys. Rev. D 28, 2129 (1983):

$$\sigma(\nu n \rightarrow \mu^{-}\Lambda K^{+}) = (5.5 \pm 1.3 \pm 1.1) \times 10^{-40} \,\mathrm{cm}^{2}$$

and
$$\sigma(\nu n \rightarrow \mu^{-}\Lambda_{c}X) \approx (65 \pm 30) \times 10^{-40} \,\mathrm{cm}^{2}$$
$$E_{\nu} > 10 \,\mathrm{GeV}$$

• But $b \rightarrow u$ production CKM-suppressed ~10⁻² w.r.t. Cabibbo-suppressed $u \rightarrow c$

• Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$

 $\Rightarrow E_v > 20 \,\text{GeV} - \text{say } E_v \sim 50 \,\text{GeV}$

• Cross-section guestimate: $\sigma(\nu N \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$

• Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$

 $\Rightarrow E_{v} > 20 \,\text{GeV} - \text{say } E_{v} \sim 50 \,\text{GeV}$

• Cross-section guestimate: $\sigma(\nu N \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$

 $\Rightarrow n \sim f \sigma \rho N_A A L \sim 10^{13} \,\text{v/s} \times 10^{-40} \,\text{cm}^2 \times 10^1 \,\text{g/cm}^3 \times 6 \times 10^{23} \times 10^2 \times 10^3 \,\text{cm}$ $\sim 10^3 \, B_s / \text{s}$

• Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$

 $\Rightarrow E_v > 20 \,\text{GeV} - \text{say } E_v \sim 50 \,\text{GeV}$

• Cross-section guestimate: $\sigma(\nu N \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$

 $\Rightarrow n \sim f \sigma \rho N_A A L \sim 10^{13} \text{ v/s} \times 10^{-40} \text{ cm}^2 \times 10^1 \text{ g/cm}^3 \times 6 \times 10^{23} \times 10^2 \times 10^3 \text{ cm}$ $\sim 10^3 B_s/\text{s}$

... not bad!

• Need neutrino energy well above threshold: $\sqrt{s} \gg 6 \text{ GeV}$

 $\Rightarrow E_{v} > 20 \,\text{GeV} - \text{say } E_{v} \sim 50 \,\text{GeV}$

• Cross-section guestimate: $\sigma(\nu N \rightarrow B_s X) \sim 10^{-40} \text{ cm}^2$

 $\Rightarrow n \sim f \sigma \rho N_A A L \sim 10^{13} \text{ v/s} \times 10^{-40} \text{ cm}^2 \times 10^1 \text{ g/cm}^3 \times 6 \times 10^{23} \times 10^2 \times 10^3 \text{ cm}$ $\sim 10^3 B_s/\text{s}$

... not bad!

 \rightarrow Is a Neutrino Factory also a B_s Factory?

Further issues

- To do the *b* physics, need
 - superb vertex resolution throughout assumed- 10^3 m^3 near-detector volume! (but maybe $10^{10} B_s/\text{y}$ is more events than necessary \Rightarrow detector can be smaller?)
- What energy is best?

- note $\sigma \propto E_v$

- How (im)perfect will the tagging be?
- All things considered, how well can the *b* physics be done?
 - Monte Carlo study is called for
- What else...?

Summary

- B_s production by high-energy Neutrino Factory potentially very interesting
- Simulation work needed to quantify *b*-physics reach