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Abstract

We present quasi-elastic neutrino-nucleus cross sections in the energy range from 150 MeV up

to 5 GeV for the target nuclei 12C and 56Fe. A relativistic description of the nuclear dynamics and

the neutrino-nucleus coupling is adopted. For the treatment of final-state interactions (FSI) we

rely on two frameworks succesfully applied to exclusive electron-nucleus scattering: a relativistic

optical potential and a relativistic multiple-scattering Glauber approximation. At lower energies,

the optical-potential approach is considered to be the optimum choice, whereas at high energies

a Glauber approach is more natural. Comparing the results of both calculations, it is found that

the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies

of 200 MeV. We argue that the nuclear transparencies extracted from A(e, e′p) measurements can

be used to obtain realistic estimates of the effect of FSI mechanisms on quasi-elastic neutrino-

nucleus cross sections. We present two independent relativistic plane-wave impulse approximation

(RPWIA) calculations of quasi-elastic neutrino-nucleus cross sections. They agree at the percent

level, showing the reliability of the numerical techniques adopted and providing benchmark RPWIA

results.

PACS numbers: 25.30.Pt; 13.15.+g; 24.10.Jv
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I. INTRODUCTION

Neutrino interactions offer unique opportunities for exploring fundamental questions in

different domains of physics. The mass of the neutrino remains one of the greatest puzzles

in elementary particle physics. In recent years, a number of positive neutrino oscillation

signals made the claims of non-zero neutrino masses irrefutable [1] and boosted the interest

in this issue. Several experiments are running or proposed in order to address intriguing

questions in current neutrino physics [2]: What does the neutrino mass hierarchy look like,

and what are the values of the oscillation parameters [1]? What is the role of vacuum and

matter-enhanced oscillations ? Are neutrinos representatives of CP-violation in the leptonic

sector ? Is the neutrino a Dirac or a Majorana particle ? Does it have a magnetic moment

? [3].

The interest in neutrinos goes beyond the study of the particle’s intrinsic properties, and

extends to a variety of topics in astro-, nuclear and hadronic physics. Typical astrophysical

examples include the understanding of the energy production in our sun, neutrino nucleosyn-

thesis and the synthesis of heavy elements during the r-process, the influence of neutrinos on

the dynamics of a core-collapse supernova explosion and the cooling of a proto-neutronstar

[4, 5]. In many astrophysical situations the neutrinos serve as messengers probing the interior

of dense and opaque objects that otherwise remain inaccessible. The influence of neutrinos

even extends to cosmological questions such as the role of neutrinos in the matter-antimatter

asymmetry in the universe. In hadronic and nuclear physics, neutrino scattering can shed

light on a lot of issues, including investigations of electroweak form factors, the study of the

strange quark content of the nucleon and ν-induced pion production [3, 6, 7].

Despite the richness of phenomena they are involved in, neutrinos remain elusive par-

ticles, only weakly interacting and eager to escape detectors on the watch. The presence

of neutrinos, being chargeless particles, can only be inferred by detecting the secondary

particles they create when colliding and interacting with matter. Nuclei are often used as

neutrino detectors, providing relatively large cross sections that offer a broad variety of in-

formation. As a consequence, a reliable interpretation of data involving neutrinos heavily

counts on a detailed knowledge of the magnitude of neutrino-nucleus interactions under var-

ious circumstances. A precise knowledge of the energy and mass number dependence of the

neutrino-nucleus cross section is essential to current and future measurements. The energies
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that neutrinos can transfer to nuclei depend on their origin. The ’low’ energy regime extends

to a few tens of MeV and relates to reactor, solar and supernova neutrinos. Atmospheric

and accelerator neutrinos can carry energies from a few hundred MeV to several GeV’s.

At intermediate energies (here defined as energies beyond the nuclear resonance region),

neutrino-nucleus interactions have been studied within several approaches, investigating a

variety of effects. The relativistic Fermi gas (RFG) model was employed in Ref. [8, 9] to

study the possibility of measuring strange-quark contributions to the nucleon form factors.

The RFG takes into account the Fermi motion of the nucleons inside the nucleus, Pauli

blocking and relativistic kinematics, but neglects several other effects. Ref. [10] used a

plane-wave impulse approximation description of the nuclear system to estimate polarization

asymmetry effects in neutrino-induced nucleon knockout. Relativistic nuclear effects were

included in the calculations of Refs. [12–17], using a relativistic shell model approach for the

study of neutral-current and/or charged-current neutrino-nucleus scattering. In particular,

in Refs. [11–14] results in the relativistic plane-wave impulse approximation (RPWIA) were

compared to RFG calculations. It is shown that binding-energy effects tend to vanish as

the energy increases. Going one step further in the complexity of the model calculation,

the implementation of the final-state interactions (FSI) of the ejected nucleon has been

performed in different manners. In Ref. [18] a phenomenological convolution model was

applied to the RFG, showing that nucleon re-scattering can produce a reduction of the

quasi-elastic cross section as large as 15% at incoming neutrino energies of about 1 GeV.

A description of FSI mechanisms through the inclusion of relativistic optical potentials is

presented in Refs. [12–16]. More specifically, Ref. [14] studies the uncertainties derived from

the use of different prescriptions for the potentials. A reduction of the cross section of at

least 14% is found at incoming neutrino energies of 1 GeV. In Refs. [15, 16], important

FSI effects arise from the use of relativistic optical potentials within a relativistic Green’s

function approach. Apart from relativistic dynamics and FSI, other effects may have an

impact on neutrino-nucleus reactions. In Refs. [19, 20] the influence of relativistic nuclear

structure effects, delta- and pion degrees-of-freedom, and RPA-type correlations on neutrino-

scattering cross sections was examined. Ref. [21] includes long-range correlations, FSI and

Coulomb corrections in 12C(νµ, µ
−)12C∗ calculations. An alternative method was proposed

in Ref. [22], where it was shown that a superscaling analysis of few-GeV inclusive electron

scattering data allows one to predict charged-current neutrino cross sections in the nuclear
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resonance region, thereby effectively including delta isobar degrees-of-freedom.

In this paper we compute the single-nucleon knockout contribution (often referred to as

quasi-elastic (QE)) to the inclusive neutrino-nucleus cross sections, for energies and nuclei

relevant to proposals like Minerνa [3], Miniboone [6] and Finesse [23]. We judge that the

large variety of relevant neutrino energies and the tendency to study neutrino-nucleus inter-

actions at increasing energies, necessitate the use of relativity. We employ two relativistic

models for describing neutrino-nucleus scattering within the impulse approximation: the rel-

ativistic distorted-wave impulse approximation (RDWIA) developed by the Madrid-Seville

group, and the relativistic multiple scattering Glauber approximation (RMSGA) developed

by the Ghent group. Initially designed for the description of exclusive electron-nucleus scat-

tering processes, both models have been succesfully tested against A(e, e′p) data [24–30].

In addition, the nuclear transparencies predicted by these models have proven to be mutu-

ally consistent in the intermediate kinematic regime between 0.5 and 1 GeV nucleon kinetic

energies where both of them are deemed reliable [29]. The RDWIA model used here has

already been employed in several neutrino-nucleus calculations [12–14]. To our knowledge,

this paper is the first report of a relativistic Glauber-inspired approach to neutrino-nucleus

reactions. The aim of this work is twofold. First, the relativistic models available to date pre-

dict different results in the limit of vanishing FSI, motivating a ’new round’ of calculations.

We investigate the plane-wave limit of the RDWIA and RMSGA approximations, aiming

at providing benchmark RPWIA results. Second, we compute the effects of FSI within

our models, paying special attention to the comparison between RDWIA and RMSGA re-

sults. It is well known that the inclusion of FSI within inclusive calculations requires a

considerable computing effort. We propose a way to estimate FSI effects for the QE contri-

bution to the inclusive neutrino-nucleus cross section using benchmark RPWIA results and

transparency data obtained from A(e, e′p) experiments. For the time being, the effects of

many-body currents, nucleon-nucleon correlations, and contributions beyond quasi-elastic

scattering processes as multi-nucleon processes and pion production are neglected.

The outline of this paper is as follows. In Sec. II we present the RMSGA and RDWIA for-

malisms for the description of the neutral- and charged-current neutrino-nucleus scattering

processes. Results of the numerical calculations are shown in Sec. III. Sec. IV summarizes

our findings.
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FIG. 1: Kinematics for the quasi-elastic neutrino-nucleus scattering process

II. FORMALISM

We derive expressions for neutrino and antineutrino neutral-current (NC) reactions from

nuclei which result in one emitted nucleon

ν(ν) + A =⇒ ν(ν) + N + (A − 1). (1)

We also consider their charged-current (CC) counterparts

ν(ν) + A =⇒ l(l) + N + (A − 1). (2)

Here, l labels the flavor of the lepton, and A represents a nucleus with mass number A.

The connection between electromagnetic and weak interactions makes that the analytical

derivations go along the same lines as those used in electron-nucleus scattering. The main

differences between neutrino and electron interactions stem from the intrinsic polarization

of the neutrino due to the parity-violating character of the weak interaction. Moreover in

weak interactions the focus is on inclusive processes, whereas exclusive processes play a

predominant role in current subatomic research with electrons.

We describe these processes at lowest order in the electroweak interaction, i.e. considering

the exchange of one charged vector boson. Fig. 1 defines our conventions for the kinematical

variables. The four-momenta of the incident neutrino and scattered lepton are labeled Kµ

and K ′µ. Further, Kµ
A, Kµ

A−1 and Kµ
f represent the four-momenta of the target nucleus, the
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residual nucleus and the ejected nucleon. The xyz coordinate system is chosen such that

the z−axis lies along the momentum transfer ~q, the y−axis along ~k× ~k′ and the x−axis lies

in the scattering plane. The hadron reaction plane is then defined by ~kf and ~q. We adopt

the standard convention Q2 ≡ −qµqµ for the four-momentum transfer.

A. Quasi-elastic neutrino-nucleus cross section

In the laboratory frame, the exclusive differential cross section for the processes specified

in Eqs. (1) and (2) can be written as [31]

dσ =
1

β

∑

if

|Mfi|2
Ml

ε′
MA−1

EA−1

MN

Ef

d3~kA−1d
3~k′d3~kf

×(2π)−5δ4(Kµ + Kµ
A − K ′µ − Kµ

A−1 − Kµ
f ), (3)

where
∑

if indicates sum and/or average over initial and final spins. Dealing with neutrinos,

the relative initial velocity β can trivially be put to 1. The factor Ml

ε′
stems from the

normalization of the outgoing lepton spinor and becomes 1 for NC reactions. Integrating

over the unobserved momentum of the recoiling nucleus ~kA−1, as well as over | ~kf |, results

in the following fivefold differential cross section for the A(ν, ν ′N), A(ν, ν ′N), A(ν, lN) and

A(ν, lN) reactions

d5σ

dε′d2Ωld2Ωf
=

MlMNMA−1

(2π)5MAε′
k′2kff

−1
rec

∑

if

|Mfi|2, (4)

where Ωl and Ωf define the scattering direction of the outgoing lepton and the outgoing

nucleon. The recoil factor frec is given by

frec =
EA−1

MA

∣

∣

∣

∣

∣

1 +
Ef

EA−1

[1 − ~q · ~kf

k2
f

]

∣

∣

∣

∣

∣

. (5)

The squared invariant matrix element Mfi can be written as

∑

if

|Mfi|2 =
G2

F

2

[

M2
B

Q2 + M2
B

]2

lαβW αβ. (6)

Here, MB represents the mass of the Z-boson for NC reactions and that of the W -boson for

CC processes. GF is the Fermi constant. For CC reactions the latter has to be multiplied

with a factor cos θc, with θc the Cabbibo angle, determining the mixing of the strong down
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and strange quarks into the weak d-quark. In the above expression the lepton tensor is

defined as

lαβ ≡
∑

s,s′

[ulγα(1 − γ5)ul]
†[uνγβ(1 − γ5)uν ], (7)

with s and s′ the initial and final lepton spins. The hadron tensor is given by

W αβ =
∑

if

〈∆αµJµ〉†〈∆βνJν〉 =
∑

if

〈J α〉†〈J β〉, (8)

with the boson propagator

∆µν = gµν − qµqν

M2
B

. (9)

The quantity 〈J α〉 in Eq. (8) can be written as

〈J α〉 ≡
〈

(A − 1)(JRMR), Kf(Ef , ~kf)ms

∣

∣

∣
∆αµĴµ

∣

∣

∣
A(0+, g.s.)

〉

, (10)

with Ĵµ the weak current operator, |A(0+, g.s.)〉 the ground state of the target even-even

nucleus and |(A − 1)(JRMR)〉 the state in which the residual nucleus is left. At the energies

considered here, Eq. (9) can approximately be written as ∆µν ≈ gµν , and the quantity

〈J α〉 ≈ 〈Jα〉, establishing the connection between the four-vector J α and the nuclear current

operator. In the extreme relativistic limit, the contraction of the lepton tensor lαβ with the

nuclear one W αβ in Eq. (6) can be cast in the form [34] :

d5σ

dε′d2Ωld2Ωf
=

MNMA−1

(2π)3MA
kff

−1
recσ

Z, W±

M

× [vLRL + vT RT + vTT RTT cos 2φ

+vTLRTL cos φ + h(v′
T R′

T + v′
TLR′

TL cos φ)] , (11)

with σM defined by

σZ
M =

(

GF cos(θl/2)ε′M2
Z√

2π(Q2 + M2
Z)

)2

, (12)

for NC reactions and

σW±

M =

√

1 − M2
l

ε′2

(

GF cos(θc)ε
′M2

W

2π(Q2 + M2
W )

)2

, (13)

for CC reactions. In these equations, θl is the angle between the direction of the incident

and the scattered lepton’s momentum and φ the azimuthal angle of the reaction plane (see
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Fig. 1). In Eq. (11), h = −1 (h = +1) corresponds to the helicity of the incident neutrino

(antineutrino). For NC reactions, the lepton kinematics is contained in the kinematic factors

vL = 1, (14)

vT = tan2 θl

2
+

Q2

2|~q|2 , (15)

vTT = − Q2

2|~q|2 , (16)

vTL = − 1√
2

√

tan2 θl

2
+

Q2

|~q|2 , (17)

v′
T = tan

θl

2

√

tan2 θl

2
+

Q2

|~q|2 , (18)

v′
TL =

1√
2

tan
θl

2
. (19)

The corresponding response functions read

RL =

∣

∣

∣

∣

〈J 0(~q)〉 − ω

|~q|〈J
z(~q)〉

∣

∣

∣

∣

2

, (20)

RT =
∣

∣〈J +(~q)〉
∣

∣

2
+
∣

∣〈J −(~q)〉
∣

∣

2
, (21)

RTT cos 2φ = 2ℜ
{

〈J +(~q)〉∗〈J −(~q)〉
}

, (22)

RTL cos φ = −2ℜ
{[

〈J 0(~q)〉 − ω

|~q|〈J
0(~q)〉

]

[

〈J +(~q)〉 − 〈J −(~q)〉
]∗

}

, (23)

R′
T =

∣

∣〈J +(~q)〉
∣

∣

2 −
∣

∣〈J −(~q)〉
∣

∣

2
, (24)

R′
TL cos φ = −2ℜ

{[

〈J 0(~q)〉 − ω

|~q|〈J
z(~q)〉

]

[

〈J +(~q)〉 + 〈J −(~q)〉
]∗

}

, (25)

where 〈 ~J (~q)〉 is expanded in terms of unit spherical vectors ~em

~e0 = ~ez, ~e±1 = ∓ 1√
2
(~ex ± i~ey). (26)

For CC reactions, the mass of the outgoing lepton has to be taken into account. This

results in the following substitutions (see also for instance [9])
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vT = 1 −
√

1 − M2
l

ε′2
cos θl +

εε′

|~q|2
(

1 − M2
l

ε′2

)

sin2 θl, (27)

vTT = − εε′

|~q|2
(

1 − M2
l

ε′2

)

sin2 θl, (28)

vTL =
sin θl√

2|~q|
(ε + ε′), (29)

v′
T =

ε + ε′

|~q|

(

1 −
√

1 − M2
l

ε′2
cos θl

)

− M2
l

ε′|~q| , (30)

v′
TL = −sin θl√

2

√

1 − M2
l

ε′2
. (31)

Furthermore

RTL cos φ = 2ℜ
{[

〈J 0(~q)〉 − ω + M2
l

|~q| 〈J z(~q)〉
]

[

〈J +(~q)〉 − 〈J −(~q)〉
]∗

}

, (32)

and

vLRL = v0
LR0

L + vz
LRz

L + v0z
L R0z

L , (33)

with

R0
L =

∣

∣〈J 0(~q)〉
∣

∣

2
, Rz

L = |〈J z(~q)〉|2 , R0z
L = −2ℜ

{

〈J 0(~q)〉〈J z(~q)〉∗
}

, (34)

and

v0
L =

[

1 +

√

1 − M2
l

ε′2
cos θl

]

, (35)

vz
L =

[

1 +

√

1 − M2
l

ε′2
cos θl −

2εε′

|~q|2
(

1 − M2
l

ε′2

)

sin2 θl

]

, (36)

v0z
L =

[

ω

|~q|

(

1 +

√

1 − M2
l

ε′2
cos θl

)

+
M2

l

ε′|~q|

]

. (37)

The expressions for RT , RTT , R′
T and R′

TL remain unaltered.

So far, a precise knowledge of the kinematic variables at the lepton vertex was assumed.

In practice, this information is not attainable in typical neutrino scattering experiments.

Indeed, in NC reactions, the scattered lepton is chargeless and remains undetected. In

CC processes, on the other hand, detection of the final lepton is possible and its energy and

momentum could in principle be measured. However, due to limited control on the incoming

neutrino energies, the energy-momentum balance at the lepton vertex cannot be precisely
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determined. In order to get the QE neutrino-nucleus cross section, we then integrate over

the phase space of the scattered lepton (d2Ωl) and the outgoing nucleon (d2Ωf (θf , φ)).

For the latter, integration over the azimuthal angle φ yields a factor 2π, whilst only the

φ-independent terms survive due to symmetry properties. This yields

dσ

dε′
=

MNMA−1

(2π)3MA
4π2

∫

sin θldθl

∫

sin θfdθfkff
−1
recσM [vLRL + vT RT + hv′

T R′
T ] . (38)

In practice, we compute the response functions for all single-particle levels in the target

nucleus, and obtain dσ/dε′ by summing over all these.

B. Nuclear current

Obviously, the determination of the response functions requires knowledge of the nuclear

current matrix elements (10). We describe the neutrino-nucleus nucleon-knockout reaction

within the impulse approximation, assuming that the incident neutrino interacts with only

one nucleon, which is subsequently emitted, although remains undetected. The nuclear

current is written as a sum of single-nucleon currents. The wave functions for the target

and the residual nuclei are described in terms of an independent-particle model. Then, the

transition matrix elements can be cast in the following form :

〈Jµ〉 =

∫

d~r φF (~r)Ĵµ(~r)ei~q.~rφB(~r) , (39)

where φB and φF are relativistic bound-state and scattering wave functions. Further, Ĵµ is

the relativistic one-body current operator modeling the coupling between the virtual Z0 or

W± boson and a bound nucleon. The relativistic bound-state wave functions are obtained

within the Hartree approximation to the σ-ω model [33]. The quantum-field theoretical

problem is solved in the standard mean-field approximation replacing the meson field op-

erators by their expectation values. The resulting eigenvalue equations of the relativistic

mean-field theory can be solved exactly. The corresponding bound-state wave functions φB

are four-spinors and can formally be written as

φB(~r) =





iGnBκB
(r)

r
YκBmB

(Ωr, ~σ)
−FnBκB

(r)

r
Y−κBmB

(Ωr, ~σ)



 , (40)

with YκBmB
(Ωr, ~σ) the familiar spin spherical harmonics.
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We use a relativistic one-body vertex function of the form:

Jµ = F1(Q
2)γµ + i

κ

2MN
F2(Q

2)σµνqν + GA(Q2)γµγ5 +
1

2MN
GP (Q2)qµγ5, (41)

with κ the anomalous magnetic moment. The weak vector form factors F1 and F2 can be

related to the corresponding electromagnetic ones for protons (F EM
i,p ) and neutrons (F EM

i,n )

by the conserved vector current (CVC) hypothesis. For proton knockout they are given by

Fi =











(

1
2
− 2 sin2 θW

)

F EM
i,p − 1

2
F EM

i,n for NC reactions,

(F EM
i,p − F EM

i,n ) for CC reactions,
(42)

with θW the Weinberg angle defined by sin2 θW = 0.2224. For neutron knockout the weak

vector form factors result from the exchange of the subindexes p and n in Eq. (42). A

standard dipole parametrization is adopted for the vector form factors.

The axial form factor for proton knockout is expressed as

GA =











−gA

2
G for NC reactions,

gAG for CC reactions
(43)

where gA=1.262, and G = (1 + Q2/M2)−2 with M = 1.032 GeV. For neutron knockout a

minus sign must be added to Eq. (43).

The Goldberger-Treiman relation allows one to write the pseudoscalar form factor as

GP (Q2) =
2MN

Q2 + m2
π

GA(Q2), (44)

where mπ denotes the pion mass. The contribution of this form factor, being proportional

to the mass of the scattered lepton, vanishes for NC reactions.

C. Final-state interactions in relativistic models

We now turn to the question of computing a relativistic scattering wave function for

the outgoing nucleon. Including nucleon-nucleus FSI is a long-standing issue in theoretical

A(e, e′p) investigations. For kinetic energies up to around 1 GeV, most calculations have

traditionally been performed within a so-called distorted-wave impulse approximation model

(DWIA), where the final nucleon scattering state is computed with the aid of proton-nucleus
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optical potentials. For proton kinetic energies above 1 GeV parameterizations of these

potentials within the context of Dirac phenomenology are not readily at hand. Furthermore,

beyond this energy the use of optical potentials for modeling FSI processes does not seem

very natural in view of the highly inelastic and diffractive properties of the underlying

nucleon-nucleon scattering process. In this energy regime, the Glauber model, which is a

multiple-scattering extension of the eikonal approximation, offers a valid and economical

alternative for describing FSI [40]. In a Glauber framework, the FSI effects are computed

directly from the elementary nucleon-nucleon scattering data. Below, we give a brief outline

of the main features of both models.

Within the RDWIA framework [24–27], φF in Eq. (39) is a scattering solution to a Dirac-

like equation, which includes scalar and vector complex optical potentials obtained by fitting

elastic pA scattering data. The real part of these potentials describes the rescatterings of the

ejected nucleon. The imaginary part accounts for the absorption into unobserved channels.

The scattering wave function, expressed in terms of a partial-wave expansion in configuration

space, reads

φF (~r) = 4π

√

Ef + MN

2Ef

∑

κµm

e−iδ∗κiℓ〈ℓm1

2
sf |jµ〉

×Y m∗
ℓ (Ωkf

)Ψµ
κ(~r) , (45)

where Ψµ
κ(~r) are four-spinors of the same form as in Eq. (40). The phase-shifts δ∗κ and

radial functions are complex because of the complex potentials. The outgoing nucleon spin

is denoted as sf . In this work we use the relativistic global optical potential corresponding

to the energy and target mass-dependent parametrization (EDAD1) of Ref. [41].

The Glauber approach relies on the eikonal and the frozen-spectators approximation.

It allows to formulate a full-fledged multiple-scattering theory for the emission of a “fast”

nucleon from a composite system consisting of A−1 temporarily “frozen” nucleons. Ref. [32]

provides a detailed outline of a relativistic and unfactorized formulation of Glauber multiple

scattering theory. In this approach, coined RMSGA, the scattering wave function in the

matrix element of Eq. (39) adopts the form

φF (~r) ≡ G(~b, z)φkf , sf
(~r) (46)

where φkf , sf
is a relativistic plane wave. The impact of the FSI mechanisms on the scattering
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wave function is contained in the scalar Dirac-Glauber phase G(~b, z)

G(~b, z) =
∏

α6=B

[

1 −
∫

d~r ′|φα(~r ′)|2θ(z′ − z)Γ(~b′ −~b)

]

, (47)

where the product over α(n, κ, m) extends over all occupied single-particle states in the

target nucleus, excluding the one from which the nucleon is ejected. The profile function for

NN scattering is defined in the standard manner

Γ(~b) =
σtot

NN(1 − iǫNN )

4πβ2
NN

exp(
−b2

2β2
NN

) . (48)

The parameters σtot
NN , βNN and ǫNN depend on the ejectile energy. Values for the parameters

fitted to the pp and pn data can be found in Ref. [37]. The neutron-neutron scattering

parameters are assumed identical to the proton-proton ones.

As the integrations in Eq. (38) would require an enormous numerical effort, we introduce

an additional averaging over the positions of the spectator nucleons. This procedure amounts

to replacing in Eq. (47) the characteristic spatial distributions of each of the spectator

nucleons by an average density distribution for the target nucleus

G(~b, z) ≈
{

1 − σtot
NN (1 − iǫNN )

4πβ2
NN

×
∫ ∞

0

b′db′TB(b′, z) exp

[

−(b − b′)2

2β2
NN

]

×
∫ 2π

0

dφb′ exp

[−2bb′

β2
NN

sin2

(

φb − φb′

2

)]

}A−1

. (49)

The function TB(b′, z) which was introduced in the above expressions is known as the “thick-

ness function” and reads

TB(b′, z) =
1

A

∫ +∞

−∞

dz′θ(z′ − z)ρB(r′(b′, z′)), (50)

where the relativistic radial baryon density ρB(r) is defined in the standard fashion

ρB(r) ≡ 〈Ψgs
A γ0Ψ

gs
A 〉 =

∑

α

∫

d~σdΩ(φα(~r, ~σ))†(φα(~r, ~σ))

=
∑

nκ

(2j + 1)

4πr2

[

|Gnκ(r)|2 + |Fnκ(r)|2
]

, (51)

and the sum over nκ extends over all occupied states. For exclusive A(e, e′, p) processes,

where the quantum numbers of the residual nucleus are well defined, the thickness-function
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approximation of Eq. (49) provided results which approach the exact ones obtained with the

expression of Eq. (47) [32]. Here, we only deal with inclusive cross sections, obtained after

incoherently summing over nucleon emission from all possible single-particle shells. Under

these circumstances, one can expect that the thickness-function approximation becomes an

even better one.

The RDWIA and RMSGA codes were developed independently and adopt distinctive

numerical techniques to compute the scattering wave functions and the corresponding ma-

trix elements of Eq. (39). The RDWIA code employs a partial-wave expansion to solve the

Dirac equation for the ejectile. The cylindrical symmetry of the Glauber phase of Eq. (47)

prohibits any meaningful use of this technique in the RMSGA calculations. Instead, the

multi-dimensional integrals are computed numerically. In the limit of vanishing FSI mech-

anisms, i.e. within RPWIA, though, both models should yield identical results. In the

Glauber picture this limit is reached by putting the Glauber phase of Eq. (46) equal to

unity. In the RDWIA picture, the effect of FSI can be made vanishing by nullifying the

optical potentials. Then, the computed partial waves sum to a relativistic plane wave. Con-

vergence of the partial wave expansion was tested against the analytical plane-wave result.

The models described above were initially developed for the description of exclusive

A(e, e′p) processes, for which an excellent agreement between theoretical calculations and

data has been achieved [24–28, 30]. It is clear that inclusive neutrino scattering cross sections

include contributions which fall beyond the scope of the RDWIA and RMSGA models. Both

the RDWIA and RMSGA are confined to those processes where the scattering of a neutrino

from a nucleus causes a single nucleon to escape, thereby exciting the residual nucleus in a

state at missing energies below 80 MeV and a predominant single-hole nuclear structure with

respect to the ground state of the target nucleus. We refer to such processes as ”elastic” ones

and wish to stress that they include proton and neutron knockout from the deepest lying 1s

up to the Fermi level. Inelastic single-nucleon knockout channels populating more complex

states in the residual A-1 nucleus are excluded from our calculations. So are multi-nucleon

knockout channels and channels involving a pion. In that sense, the RDWIA and RMSGA

predictions for the inclusive neutrino-nucleus cross sections should be interpreted as a lower

limit of the single-nucleon knockout contribution.
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III. RESULTS

We present results for QE neutrino scattering from 12C and 56Fe, which are nuclei well

suited for neutrino detection. The calculations span incident neutrino energies from 150 MeV

up to 5 GeV. From about 200 MeV to 1 GeV, the quasi-elastic nucleon knockout is expected

to be the dominant contribution to the neutrino-nucleus cross section. At higher energies,

the relative contribution of the inelastic channels, mainly those involving an intermediate

delta resonance and pion production, is expected to become increasingly dominant in the

inclusive process [42, 43]. Ref. [43] indicates that in the neutrino energy range from 0.7 to

5 GeV reaction channels involving a pion contribute for 15% to the total cross section.

In order to make the comparisons between the RDWIA and RMSGA calculations as

meaningful as possible, all the ingredients in the calculations not related to FSI, as those

concerning the implementation of relativistic dynamics and nuclear recoil effects, are kept

identical. In particular, both pictures adopt the W1 parametrization [36] for the different

field strenghts in determining the bound-state wave functions. Accordingly, the RDWIA

and RMSGA only differ in their assumptions regarding the treatment of FSI.

It speaks for itself that before embarking on the study of effects like FSI, pion production,

the role of the delta in the medium, multi-nucleon knock-out, the strangeness content of the

nucleon ..., it is absolutely essential to possess reliable baseline RPWIA cross sections with

a numerical accuracy of a few percent. To this purpose, before turning to the study of the

role of FSI mechanisms, we first investigate the RPWIA limit of the RMSGA and RDWIA

models. These predictions will be compared and confronted with other RPWIA results

which made their way to literature recently [15, 17].

A. RPWIA

Fig. 2 shows the results of various RPWIA calculations for 12C(ν, ν ′) at 150, 500 and 1000

MeV. We observe that the plane-wave limits of our RMSGA and RDWIA formalisms are in

excellent agreement. The remaining differences, smaller than 2-3%, can be attributed to the

distinctive numerical techniques. This comparison lends us confidence about the consistency

of the two types of calculations and the reliability of the adopted numerical techniques.

The fact that our models provide almost identical RPWIA results may seem trivial. As
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FIG. 2: Neutral current 12C(ν, ν ′) cross sections as a function of the outgoing nucleon kinetic energy

TN at different incoming neutrino energies. The solid (dashed) lines represent the RPWIA results

of the Ghent (Madrid) group. The short-dot-dashed lines show the RPWIA results of Ref. [17],

and the long-dotted lines those of Ref. [15]. The short-dotted (long-dot-dashed) line shows the

predictions of the RFG model of Ref. [14] (Ref. [8]) with a binding-energy correction of 27 MeV.

can be appreciated via Fig. 2, however, our RPWIA predictions disagree with the ones of

Refs. [15] and [17]. Although the RPWIA calculations of Refs. [15] and [17] are mutually

consistent at ε = 500 MeV, this is no longer the case at ε = 1 GeV. In the search for the origin

of the discrepancies between our and other RPWIA calculations, differences in the nuclear
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current can be ruled out. The current operator of Eq. (41) used along this work is formally

identical to the one mentioned in Refs. [15] and [17], and the same holds for the form-factor

parameterization. Only the bound-state wave functions used in Refs. [15] and [17] differ

from ours. We have performed cross section calculations with various parameterizations for

the bound state wave functions, and found almost negligible differences.

The role of the various terms F1, F2 and GA in Eq. (41) in the NC differential cross

section was investigated in Ref. [17]. The results were illustrated for proton knockout from

the 1p3/2 orbital of 12C, at incident neutrino energies of 150, 500 and 1000 MeV. We have

analysed the contribution of the F1, F2 and GA terms in our cross sections under the same

circumstances. In agreement with the results of Ref. [17], we find that the contribution of

the Dirac form factor F1 can safely be neglected. The cross sections including only GA or

F2 are very similar to the corresponding ones in Ref. [17], except for the oscillations in their

results at 500 and 1000 MeV. These findings seem to indicate that the differences between

the RPWIA results of Ref. [17] and those we present here might be attributed to the GAF2

interference term.

It is well known that binding-energy effects tend to vanish with increasing energies.

Accordingly, a description of the ν-nucleus scattering process in terms of a RFG model is

expected to approach the RPWIA predictions at high incoming neutrino energies. This is

observed in Fig. 2, when comparing the RFG results of Refs. [8, 12, 14] with our RPWIA

predictions. At ε = 150 MeV, our RPWIA cross sections are approximately 15% smaller than

the RFG ones, that include a non-zero binding-energy correction of 27 MeV. The RPWIA

prediction of Ref. [17] is about a factor of two smaller. The RFG result from Refs. [12, 14]

closely follows our RPWIA results at 500 MeV, the agreement at 1 GeV being remarkably

good. The observed similarity between the independent RFG predictions of Refs. [8, 12, 14]

and our RPWIA results lends us additional confidence that the RPWIA results presented

here can serve as benchmark calculations.

B. The effect of FSI : RMSGA and RDWIA approaches

Let us now turn our attention to the effect of FSI. NC ν-nucleus cross sections obtained

within RDWIA and RMSGA are displayed in Fig. 3. The calculations correspond to 12C

and 56Fe targets, and incoming energies of 500, 1000, and 5000 MeV. Focusing on the results
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FIG. 3: Neutral current 12C(ν, ν ′) (left panels) and 56Fe(ν, ν ′) (right panels) cross sections as a

function of TN at different incoming neutrino energies. The solid lines represent the RPWIA

predictions of the Madrid group, in agreement with those of the Ghent one. The dashed (dot-

dashed) lines implement the effect of FSI within the RMSGA (RDWIA) framework.

of the RDWIA model, the inclusion of the complex optical potential reduces the RPWIA

results by nearly 40 − 50% for 12C. As expected, the global effect of FSI increases with

growing atomic number, and reductions of over 60% are obtained for 56Fe. The presence

of the imaginary term in the optical potential is likely to lead to an underestimation of

the single-nucleon knockout contribution to the inclusive cross section. Indeed, in inclusive

measurements all possible final channels are included, whilst the RDWIA and RMSGA

calculations are confined to ”elastic” single-nucleon knockout.

Traditionally, Glauber-inspired models have been esteemed to provide reliable results at
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FIG. 4: Charged current 12C(νµ, µ−) (left panels) and 56Fe(νµ, µ−) (right panels) cross sections as

a function of the outgoing lepton energy ε′ at different incoming energies. The labeling is the same

as in Fig. 3.

high energies, as they rely on the eikonal approximation. A very striking outcome of Fig. 3

is that, for integrated quantities as the ones involved in neutrino experiments, the RMSGA

cross sections compare very well with the RDWIA ones down to remarkably low ejectile

kinetic energies of about 200 MeV. Below this energy, the RMSGA predictions are not

realistic due to the underlying approximations, mainly the postulation of linear trajectories

and frozen spectator nucleons.

For the sake of completeness, in Fig. 4 we show our predictions for CC ν-nucleus cross

sections. The effects of FSI are of the same order as for NC, and very similar results are

also obtained within RMSGA and RDWIA down to very low ejectile kinetic energies.
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C. Estimating the effect of FSI mechanisms

A quantity routinely used to estimate the overall effect of FSI in nucleon-emission pro-

cesses is the nuclear transparency. Intuitively, it provides a measure for the probability that

a nucleon of a certain energy - above the particle-emission threshold - can escape from the

nucleus without being subject to any further interaction. From this ’definition’, one can

expect that the nuclear transparency is identical for neutrino and electron induced nucleon

knockout. Once the nucleon is traversing the nuclear medium, only its energy is expected

to determine the way it propagates. In addition, neutrinos and electrons can be expected

to probe equal amounts of bulk and surface parts of the target nucleus.

Several investigations of the nuclear transparency have been carried out using the A(e, e′p)

reaction in the QE regime (i.e. the Bjorken variable x = Q2/(2MNω) ≈ 1), and data for

different nuclei are now available. The nuclear transparency is extracted from the ratio of the

measured A(e, e′p) yield to the calculated one using the plane-wave impulse approximation,

according to

Texp(Q
2) =

∫

V
d3pmdEmYexp(Em, ~pm, ~kf)

c(A)
∫

V
d3pmdEmYPWIA(Em, ~pm)

. (52)

The quantity V specifies the experimental phase-space in missing momentum (pm) and en-

ergy (Em). The kinematics cuts |pm| ≤ 300 MeV/c and Em ≤ 80 MeV, in combination with

the requirement that x ≈ 1, guarantee that the electro-induced proton-emission process is

predominantly quasi-elastic. The factor c(A) is introduced to correct in a phenomenological

way for short-range mechanisms, and is assumed to be moderately target-mass dependent

(c = 0.9 for 12C, and c = 0.82 for 56Fe). It accounts for the fact that short-range correlations

move a fraction of the single-particle strength to higher missing energies and momenta and,

hence, beyond the ranges covered in the integrations of Eq. (52). Without going into details,

theoretical predictions are obtained in a similar way from the ratio of distorted-wave calcu-

lations to plane-wave ones. In Fig. 5, the transparencies predicted by the RMSGA and the

RDWIA models are displayed as a function of Q2 for 12C and 56Fe, together with the world

data extracted from A(e, e′p). Solid (dot-dashed) lines show the A(e, e′p) results within

RMSGA (RDWIA). Details about the calculations can be found in Ref. [29]. The dashed

(RMSGA) and dotted (RDWIA) curves correspond to the computed A(ν, ν ′p) transparen-

cies, obtained using the same procedure as for electron scattering. This procedure includes

the computation of RDWIA and RPWIA cross sections at x ≈ 1, averaged over the same
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FIG. 5: Nuclear transparencies versus Q2 for different nuclei in quasi-elastic kinematics. The solid

(dot-dashed) lines shows the results of a RMSGA (RDWIA) A(e, e′p) calculation [29]. The dashed

(dotted) lines represent the results for A(ν, ν ′p) within RMSGA (RDWIA). Data points are from

Refs. [45] (open squares), [46, 47] (open triangles), [48] (solid circles) and [49, 50] (solid triangles).

phase space used in Eq. (52). As can be seen, within each model the neutrino transparencies

agree quite well with their electron counterparts. This result clearly illustrates the fact that

in our models the average attenuation effect of the nuclear medium on the emerging nucleon

is rather independent of the nature of the leptonic probe.

Adopting the idea that the nuclear transparency for electrons equals the one for neutrinos,

the information obtained about nucleon propagation via A(e, e′p) can be used to predict the

effects of FSI mechanisms in inclusive QE ν-nucleus cross sections. As the transparency is

essentially the ratio of cross sections including FSI to the ones in the plane-wave limit, this

will be done by multiplying the RPWIA results for neutrino-nucleus cross sections with the

measured transparency factors extracted from A(e, e′p). In this scenario, the benchmark
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FIG. 6: Charged current 12C(νµ, µ−) (left panels) and 56Fe(νµ, µ−) (right panels) cross sections as a

function of ε′ at different incoming energies. The dashed (dot-dashed) lines represent the RMSGA

(RDWIA) prediction. The solid lines show the RPWIA results, scaled with a transparency factor

T (12C) ≈ 0.52 and T (56Fe) ≈ 0.34.

RPWIA neutrino-nucleus cross sections are crucial. It is important to realize that we use

transparency factors that are confined to x ≈ 1, while the computation of the inclusive

neutrino-nucleus cross section include the full phase-space.

In Fig. 6, the dashed and dot-dashed lines represent the inclusive CC ν-nucleus cross sec-

tion within RMSGA and RDWIA, respectively. The solid curve displays our corresponding

RPWIA calculation, scaled with a constant factor taken as a representative value for the ex-

perimental A(e, e′p) transparency for the nucleus. For 12C (56Fe) we take T ≈ 0.52 (≈ 0.34).

In extracting these values, we have corrected the measured transparencies from Fig. 5 with
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the factor c(A). A very good agreement is observed between the rescaled RPWIA and the

full RDWIA/RMSGA curves in the case of 12C. This finding supports the idea that a simple

scaling of the RPWIA results with a transparency factor obtained from electron scattering

data allows one to reliably estimate the FSI effects for the quasi-elastic contribution to the

inclusive neutrino cross section. The fact that for 56Fe the agreement is less satisfactory

reflects the fact that our models slightly underestimate the 56Fe transparency data.

Finally, Fig. 7 displays the total cross section (σ =
∫

dε′(dσ/dε′)) for 12C(νµ, µ−) and

56Fe(νµ, µ
−) reactions, scaled with the number of neutrons in the target. Results are shown

within RPWIA and RDWIA using a complex optical potential. The figure clearly shows that

the difference between RPWIA and RDWIA cross sections is approximately given by the

experimental transparency factor extracted from A(e, e′p) at QE kinematics. Furthermore,

other important features can be extracted from this figure. First, the RPWIA cross sections

scale with the target mass-number. In this way, when RPWIA cross sections are required

for a heavy nucleus, a very good approximation consists in multiplying this cross section

per nucleon by its mass number. Second, the cross sections do not appreciably change from

neutrino energies above 2 GeV, i.e. the cross sections saturate at high incoming neutrino

energies. To finish with, we compare our relativistic calculations with data from various

experiments. The RPWIA calculations give a fair account of the neutrino-energy and mag-

nitude of the data. The RPWIA is confined to single-nucleon knockout thereby not including

final-state interaction effects. The RDWIA calculations, on the other hand, including FSI

effects via the introduction of an optical potential, considerably underestimate the data. The

results contained in Fig. 7 indicate that at least 50% of the measured (νµ, µ
−) strength can

be attributed to single-step (”elastic”) nucleon knockout to missing energies below 80 MeV

in the residual A-1 nucleus. The remaining fraction of about 50% could be attributed to

multi-nucleon knockout, pion production, single-nucleon knockout to more complex states,

... . Adding all these contributions would move the calculations closer to the data.

It has been suggested [33, 44] that the importance of these missing channels can be

estimated in a model in which both the single-particle bound-states and scattering states

are computed in a real mean-field potential obtained in the Hartree approximation to the

σ − ω model. Such an extreme mean-field model (here coined as RMF) involves no imagi-

nary potential and accordingly the loss of single-nucleon knockout strength into ”inelastic”

nucleon-knockout channels is effectively reintroduced. As can be appreciated from Fig. 7,
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FIG. 7: Total CC (νµ, µ−) neutrino cross sections as a function of the incoming neutrino energy.

The solid (dashed) line shows the RPWIA calculations on 12C (56Fe). The dot-dashed (long-dotted)

curves implement the effect of FSI on 12C (56Fe) within RDWIA. The short-dotted (long-dashed)

show the RMF curve for 12C (56Fe). All results are scaled with the number of neutrons in the

target. Data points are from Refs. [51–58].

the presence of a real potential reduces the RPWIA single-nucleon knockout strength, but

the global reduction with respect to RPWIA is much smaller compared to the 50 − 60%

in the RDWIA/RMSGA frameworks. It is remarkable that the energy dependence of the

cross section is identical in all three relativistic frameworks adopted here. The magnitude,

on the other hand, depends strongly on the model used to account for FSI mechanisms.

This reinforces our suggestion that one could use RPWIA results to predict the ”elastic”

single-nucleon knockout contribution to inclusive neutrino cross sections, provided that they

are rescaled with a transparency factor extracted from A(e, e′p) data.
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IV. CONCLUSIONS

We have employed two relativistic models, RMSGA and RDWIA, to study NC and CC

quasi-elastic neutrino-nucleus scattering. Results have been presented for carbon and iron

targets, covering a wide range of neutrino energies. Within RPWIA both models provide

nearly identical results, which deviate from existing RPWIA predictions. The fact that

two independently developed codes that adopt very different numerical techniques agree in

this limit, together with the fact that our RPWIA predictions approach the RFG model

at high energies, give us confidence that our RPWIA calculations serve as benchmark re-

sults. We subsequently computed the effects of FSI mechanisms within the RMSGA and

RDWIA models. The two ways of dealing with FSI are consistent down to remarkably low

outgoing nucleon kinetic energies of about 200 MeV. FSI produce a large reduction of the

cross sections, that increases with the mass number of the target nucleus. Finally, we have

illustrated that the nuclear transparencies extracted from A(e, e′p) measurements can be

used to estimate the effect of FSI mechanisms on the elastic single-nucleon knockout con-

tribution to the inclusive neutrino-nucleus cross sections. Extensions of our models include

the implementation of pion production and delta resonance. Work in this direction is in

progress.
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