T2K phase-I and II

Yoshikazu Yamada (KEK-IPNS) for T2K collaboration and J-PARC Neutrino facility construction group Talk at session5 of WG1 at NUFACT05, June 23, 2005

Contents

- Introduction of T2K experiment
- Neutrino detectors
- v_{μ} disappearance and v_{e} appearance
- CP violation in T2K Phase-II

Long baseline oscillation

 $\text{Maki-Nakagawa-Sakata (MNS) matrix} \quad \begin{vmatrix} v_l \\ v_l \end{vmatrix} = \sum U_{li} \begin{vmatrix} v_i \\ v_i \end{vmatrix} \quad s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij} \\ s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij} \\ 0 \quad c_{23} \quad s_{23} \\ 0 \quad c_{23} \quad s_{23} \\ 0 \quad 0 \quad e^{-i\delta} \end{vmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

•Precise meas. of disappearance $V_{\mu \rightarrow} V_{x}$ $P_{\mu \rightarrow x} \approx 1 - \cos^{4} \theta_{13} \cdot \sin^{2} 2\theta_{23} \cdot \sin^{2} (1.27 \Delta m_{23}^{2} L / E_{v})$

•Discovery of $V_{\mu \rightarrow} V_e$ appearance

 $P_{\mu \to e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(1.27 \Delta m_{13}^2 L / E_{\nu}\right)$

Discovery of CP violation (Phase2)

$$A_{CP} \approx \frac{\Delta m_{12}^2}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

J-PARC Neutrino facility

Components

- Primary proton beam line
 - 50GeV, 0.75MW, Fast extracted
- Target/Horns
- Decay volume (130m)
- Beam dump & Muon monitor
- Near neutrino detectors @280m
- Second near neutrino detector
 @2km: future option (Off-axis)

• Far detector SK (Off-axis)

Near Detector @ 280m

Near Detector @2km

Future option to reduce systematic errors

- v_{μ} energy spectrum for v_{μ} disappearance
- v_e background study for v_e appearance

\Rightarrow Next speaker

Far Detector: SK

- Partial reconstruction in 2002
 - 47% of PMT's(~5200)
- Full reconstruction
 - PMT's attachment: Nov.2005 ~ Mar.2006
 - Water filling: Apr. ~ May 2006
 - Data taking: from June 2006

41.4m

Sensitivity on disappearance

Discovery of v_e appearance

$v_{e} \text{ appearance: } \theta_{13} \& \Delta m_{13}$ $P_{\mu \rightarrow e} \approx \sin^{2} \theta_{23} \cdot \sin^{2} 2 \theta_{13} \cdot \sin^{2} \left(1.27 \Delta m_{13}^{2} L / E_{\nu} \right)$

Background for v_e appearance

- -Intrinsic ν_e component in initial beam
- •Merged π^0 ring from v_{μ} interactions Requirement: 10% uncertainty for BG estimation

Sensitivity on appearance

sin²2θ ₁₃	Background in Super-K			Signal	Signal
	$ u_{\mu}$	v_e	total	Signal	+ BG
0.1	10	13	23	103	126
0.01				10	33

Development of sensitivity

Comparison with NOvA

T2K phase-II

$x \sim 100$ sensitivity for CP violation ■ J-PARC: 0.75MW \Rightarrow 4MW (x5)

■ SK:22.5kton ⇒ HK:0.54Mton (x24)

CP violation in lepton sector

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \approx \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \bullet \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \bullet \frac{\sin \delta}{\sin \theta_{13}}$$

Maki-Nakagawa-Sakata (MNS) matrix $|v_l\rangle = \Sigma U_{li}|v_i\rangle$ $s_{j} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Hyper-Kamiokande

Super-Kamiokande (50kt, 11000 PMT's)

Fiducial mass: 22.5kt

Hyper-Kamiokande (~1Mt, ~ 200000 photo-sensors)

Not official, Not approved

Expected signal and BG

CPV vs matter effect

 $v_{\mu} \rightarrow v_{e}$ osc. probability w/ CPV/matter

J-PARC/T2K: smaller distance/lower energy small matter effect ⇒Pure CPV & Less sensitivity on sign of ∆m²

3σ Sensitivity for CPV

Summary

•T2K-I experiment will start in 2009
 After five years run or 5×10²¹ POT,
 • ν_µ disappearance

 $\delta(sin^2 2\theta_{23}) \sim 0.01$, $\delta(\Delta m_{23}^2) \sim <1 \times 10^{-4}$

- Discovery of $V_{\mu \rightarrow} V_e$ appearance sin²2 θ_{13} >0.006
- •Future upgrade as T2K phase-II 4MW beam and Hyper-Kamiokande to discover CP violation

supplement

Neutrino oscillation

More exact oscillation probability

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\ell}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31} & \theta_{13} \\ & +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\underline{\cos\delta} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} & CP \text{ conserving} \\ & -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\underline{\sin\delta}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} & eF \\ & +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} & \text{ solar } \nu \\ & -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} & \text{ matter effect} \\ \delta \rightarrow -\delta, a \rightarrow -a \text{ for } \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} & \Phi_{ij} = \Delta m_{ij}^{2}L/4E, S_{ij} = \sin\theta_{ij}, C_{ij} = \cos\theta_{ij} \\ & L: \text{ flight length, } E: \text{ neutrino energy,} \\ & \Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}, m_{i}: \text{ mass eigenvalues} \end{split}$$

$$a = 7.6 \times 10^{-5} \left(\frac{\rho}{[g/cm^3]} \right) \left(\frac{E}{[GeV]} \right) \quad [eV^2]$$

Background systematic error required to be ~ less than 10%

NOvA Physics Reach

v_e appearance

1 1 Fraction of δ Fraction of δ L = 810 km, 12 km off L = 810 km, 12 km off ΝΟνΑ ΝΟνΑ $\Delta m_{23}^2 = 2.5 \ 10^{-3} \ eV^2$ $\Delta m_{23}^2 = 2.5 \ 10^{-3} \ eV^2$ 0.9 0.9 Each v and \bar{v} 100x10²⁰ pot 0.8 0.8 12x10²⁰ pot, ∆m² > 0 (Proton Driver) 12×10^{20} pot, $\Delta m^2 < 0$ $\Delta m^2 > 0$ 0.7 0.7 $\Delta m^2 < 0$ Feldman, Aspen PAC 2004 ----- $60x10^{20}$ pot. $\Delta m^2 > 0$ and the second s 0.6 0.6 $60 \times 10^{20} \text{ pot}, \Delta m^2 < 0$ (Proton Driver) 0.5 T2K Phase 1 50kton baseline 0.5 detector 0.4 50kton baseline 0.4 detector 20x10²⁰ pot 0.3 $\Delta m^2 > 0$ 0.3 $\Delta m^2 < 0$ 0.2 0.2 0.1 0.1 0 10⁻³ -2 0 10 ¹⁰ sin²(2θ₁₃) -2 -1 10⁻¹ sin²(2θ₁₃) 10

3 σ Sensitivity to sin²(2 θ_{13})

Mass hierarchy

2 σ Resolution of the Mass Hierarchy

v / \bar{v} CC interaction spectrum for CPV meas.

Complementarily of Reactor-Accelerator Meas.

Reactor Measurement= Pure $\sin^2 2\theta_{13}$ measurement

Reactor-Accelerator combination

=> <u>a lot of physics potential</u>

 $\sin^2 2\theta_{13}$

Attempt to compare Double-Chooz with 2K (3 discovery potential)

Reactor experiment proposals

$sin^2(2\theta_{13})$ at LBL & reactors

 $\Delta m^2 = 2.0 \ 10^{-3} \ eV^2$

P. Huber et. al. hep/0403068

v_e contamination

Introduction

K2K : the 1st LBL experiment in operation

- Powerful probe to investigate neutrino mass/mixing
- Statistical error dominant
- T2K : the 1st Superbeam LBL Experiment
 - Phase-I : 100 × K2K, JPARC(750kW) Super-Kamiokande
 - Precision measurements on neutrino mass and mixing
 - Phase-II: 100 × Ph.-I, Super-JPARC(4MW) Hyper-Kamiokande

Maki-Nakagawa-Sakata (MNS) matrix $|U_i| = \sum \mathcal{U}_0$ study the origin of θ_{ij}

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P_{l \to m} = \left| \left\langle v_m(t) \middle| v_l(0) \right\rangle \right|^2 = \delta_{ml} - 2\sum_{i < j} \operatorname{Re} \left[\left(U_{mi}^* U_{li} \right) \cdot \left(U_{mj} U_{lj}^* \right) \cdot \left\{ 1 - \exp \left(-i \frac{\Delta m_{ij}^2}{2E} L \right) \right\} \right]$$

L: flight length, *E*: neutrino energy, $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$, m_i : mass eigenvalues

Current Knowledge
Atm-v:
$$\Delta m_{atm}^2 = (1.5 \sim 3.4) \times 10^{-3} \text{ eV}^2$$
, $\sin^2 2\theta_{atm} > 0.92$
 $\Delta m_{atm}^2 = (1.9 \sim 3.0) \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{atm} > 0.90$
(SK L/E)
K2K : $\Delta m_{atm}^2 = (1.7 \sim 3.5) \times 10^{-3} \text{ eV}^2$ @ $\sin^2 2\theta_{atm} = 1$
 $\Delta m_{sol}^2 = 7.7 \sim 8.8 \times 10^{-5} \text{ eV}^2$, $\tan^2 \theta_{sol} = 0.33$
 ~ 0.49

$$\begin{cases} \Delta m_{12}^2 = \Delta m_{sol}^2 << \Delta m_{23}^2 \approx \Delta m_{13}^2 = \Delta m_{am}^2 \end{cases}$$
K-resolution from Δm_{12}
 $\Phi_{23} = 1.27 \Delta m_{atm}^2 L/E_v$
 $P_{\mu \to x} = 1 - (P_{\mu \to e} + P_{\mu \to \tau} + P_{\mu \to sterile}) \approx P_{\mu \to \tau}$
 v_{μ} disappearance $\theta_{13} \cdot \sin^2 2\theta_{23} \cdot \sin^2 \Phi_{23} \equiv \sin^2 2\theta_{\mu \tau} \cdot \sin^2 \Phi_{23}$
 v_e appearance
 $\mu P_{e \to x} \approx 1 - \sin^2 2\theta_{13} \cdot \sin^2 \Phi_{23}$

v_e disăppearance

• CHOOZ(1km/3MeV) = $\sin^2 2\theta_{13} < 0.12 \sim 0.20 @ \Delta m_{atm}^2$

13 : the Last Unknown Mixing Angle

Errors will be further improved by 280m measurements, pion production measurements, and 2km measurements !

Search for sterile neutrinos Select NC π^0 events For OA2 5yr, 280 **680** $(\Delta m^2 = 3x10^{-3}eV^2)$ Number of NC π^0 candidates, 500 400 ν_{μ} 300 200 ν_{μ} 100 V_{s} WBB(obsolete!) SK 22.5kt•1yr 0 10-4 10-3 10-2 10-1

 $\Delta m^2 (eV^2)$
Tight e/π^0 separation

- cosθ_{ve}: γ from π^o tend to have a forward peak
- $E(\gamma_2)/E(\gamma_1+\gamma_2)$: Large for BG
- Likelihood diff. between 1-ring and 2rings

T2K sensitivity to v_e **appearance**

Contents:

- 1. Effect of the degeneracy in θ_{23}
- 2. Contributions from θ_{12}
 - with exact oscillation formula
- 3. Sensitivity as a function of CP phase δ
- 4. Comment on resolving normal/inverted mass hierarchy

Configuration

- Beam MC: Flux04a
 - 40 GeV primary proton beam
 - 130 m long decay pipe
 - 2.5 deg. off-axis beam
- 5 years (10²¹ POT/year)
- SK fiducial volume: 22.5 kt
- Event selection:
 - FCFV 1-ring e-like with no decay electron
 - Further cuts for π^0 rejection
 - Ref. NP04 Mine-san's presentation:

http://jnusrv01.kek.jp/jhfnu/NP04nu/PresenFiles/sk/

Uncertainty in B.G. estimation = 10%

Assumption for the studies

• Δm_{12}^2 , θ_{12} : KamLAND2004 + Solar v $\Delta m_{12}^2 = 8.2 \times 10^{-5} \text{ eV}^2$ $\tan^2 \theta_{12} = 0.40$

- Δm_{23}^2 , θ_{23} : Around atmospheric *L/E* $\Delta m_{23}^2 = (1.9 \sim 3.0) \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23} = 0.9 \sim 1$
- Matter effect (set to be zero in this study) $a \equiv 2\sqrt{2}G_F n_e E_v = 7.56 \times 10^{-5} [eV^2] \cdot \frac{\rho}{[g/cm^3]} \cdot \frac{E_v}{[GeV]}$ $(\rho = 2.8 \text{ g/cm}^3)$
- No CP violation (CP phase $\delta = 0$) unless noted

Simplified Oscillation

• v_{μ} disappearance

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4C_{23}^2 S_{23}^2 C_{13}^4 \cdot \sin^2 \Delta_{32} - P(\nu_{\mu} \to \nu_e)$$

v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin \Delta_{31}$$

• beam $v_e \rightarrow v_e$ oscillation

$$P(v_e \rightarrow v_e) = 1 - 4C_{13}^2 S_{13}^2 \sin^2 \Delta_{13}$$

assuming
$$\Delta m_{32}^2 = \Delta m_{31}^2 \ (\Delta m_{21}^2 = 0)$$

Exact Oscillation

v₁₁ disappearance

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{13}^{2}S_{23}^{2} - 2C_{12}C_{23}S_{12}S_{13}S_{23}\cos\delta)S_{23}^{2}C_{13}^{2} \cdot \sin^{2}\Delta_{23}$ $-4(S_{12}^{2}C_{23}^{2} + C_{12}^{2}S_{13}^{2}S_{23}^{2} + 2C_{12}C_{23}S_{12}S_{13}S_{23}\cos\delta)S_{23}^{2}C_{13}^{2} \cdot \sin^{2}\Delta_{13}$ $-4(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{13}^{2}S_{23}^{2} - 2C_{12}C_{23}S_{12}S_{13}S_{23}\cos\delta)$ $\times (C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{13}^{2}S_{23}^{2} + 2C_{12}C_{23}S_{12}S_{13}S_{23}\cos\delta) \cdot \sin^{2}\Delta_{12}$

• Ve P(Ve) =
$$4C_{13}^2S_{13}^2S_{23}^2 \cdot \left(1 + \frac{2a}{\Delta m_{13}^2}(1 - 2S_{13}^2)\right) \cdot \sin^2 \Delta_{31}$$

+ $8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$
- $8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$
+ $4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2 + S_{12}^2S_{23}^2S_{13}^2 - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^2 \Delta_{21}$
- $8C_{13}^2S_{13}^2S_{23}^2 \cdot \frac{aL}{4E_v}(1 - 2S_{13}^2) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31}$

 $Deal \to V_e^{(\gamma_e \to V_e)} = 1 - 4C_s^2 S_1^2 \left(C_1^2 \sin^2 \Lambda_{13} + S_{12}^2 \sin^2 \Lambda_{23} \right) - 4S_{12}^2 C_{12}^2 C_{13}^4 \sin^2 \Lambda_{12}$ $\Delta m_{31}^2 = \Delta m_{21}^2 + \Delta m_{32}^2$

with a valation of

Changes from Mine-san's version

Mine-san's version:

http://jnusrv01.kek.jp/~jnurep/physics/nue/mine_nue_sk40gev.ppt

- Two small bugs are fixed
 - Use 'amome' instead of 'amom' in Eve reconstruction
 - Impact:: oscillated $v_e(CC)$ signal: 103 \rightarrow 105 events

at sin²2 θ_{13} =0.1, Δm^2_{13} =2.5x10⁻³ eV²

• Oscillation formula for beam $v_e \rightarrow v_e$ oscillation in "simple version"

(1/2)*sin²2 θ_{13} *sin² Δ_{13} \rightarrow sin²2 θ_{13} *sin² Δ_{13}

• Impact:: beam v_e B.G.: 13 \rightarrow 14 events

at sin^22 θ_{13} =0.1, Δm^2_{13} =2.5x10⁻³ eV²

- Change in $v_{\mu} \rightarrow v_{\mu}$ oscillation formula in "simple version"
 - 1 $\sin^2 2\theta_{23}^{\dagger} * \sin^2 \Delta_{23}^{\dagger} \rightarrow 1 \sin^2 2\theta_{23}^{\dagger} * \cos^4 \theta_{13}^{\dagger} * \sin^2 \Delta_{23}^{\dagger} P(v_{\mu} \rightarrow v_{e})$
 - Impact:: negligible effect at $sin^2 2\theta_{13} = 0.1$, $\Delta m^2_{13} = 2.5x10^{-3} \text{ eV}^2$
- Exact formulae for oscillations are included

Sensitivity to v_e appearance (simple oscillation)

 Condition is almost same as Mine-san's version except for a few minor changes (see page 6)

Sensitivity to v_e appearance (exact oscillation)

• Contribution of θ_{12} terms to v_e appearance

 2.6±0.6 appearance events are expected with "KamLAND2004+Solar" parameters, even if θ₁₃ is set to be 0.

Why does the Δm² value of the maximum sensitivity to sin²2θ change between simple and exact versions?

When $\sin^2 2\theta_{13} \sim 0.01$, $\theta_{23} = \pi/4$, $\tan^2 \theta_{12} = 0.4$, $\Delta m^2_{12} = 8.2 \times 10^{-5} \text{ eV}^2$, and $E_v \sim 0.6 \text{ GeV}$

Oscillation probability as a function of E_v

Sensitivity with θ_{12} contribution subtracted

 Contribution of θ₁₂ terms (2.6±0.6 events) are simply subtracted from v_e appearance signals

Sensitivity to θ_{13} as a fuction of CP-phase δ (θ_{12} contribution not subtracted)

Sensitivity to θ_{13} as a fuction of CP-phase δ (θ_1 , contribution subtracted)

Comment on the sign of Δm^2_{13}

- So far, VLBL experiment is considered to have a capability of probing the sign of Δm²₁₃ via matter effect.
- But, the sign of phase shift described on page 9 alternates according to the sign of Δm²₁₃ and sign of cosδ.

(see right figures)

- In T2K,
 - Δm_{23}^2 is precisely measured by v_{μ} disappearance
 - using this Δm_{23}^2 , we can estimate the size of θ_{13} if v_e appearance is observed.
 - If $\sin^2 2\theta_{13} \sim 0.01 0.1$, we may probe the sign of Δm_{13}^2 using the v_e spectral information. (The contribution of interference term is also reasonably large around $\sin^2 2\theta_{13} \sim 0.01 - 0.1$)
- T2K may have a capability of probing the sign of $(\Delta m_{13}^2) \times (\cos \delta)$, depending on the size of CP-phase δ , θ_{12} and Δm_{12}^2

Comment on sign of Δm_{13}^2 (cont'd)

- Reconstructed neutrino energy distributions for positive and negative ∆m²₁₃
 - Difference is a bit small to probe...
 - \rightarrow maybe issue of T2K phase-II.

- Only upper bound from CHOOZ reactor exp
- At the same Δm^2 as v_{μ} disapp. \rightarrow Support 3gen. mix. framework
- Open possibility to search for CPV ($\theta_{any}=0 \rightarrow No CPV$)
- Mass hierarchy (sign of Δm^2)
- CPV
- Approaches
 - LBL experiment: Multi purpose $(\theta_{13}, sign(\Delta m^2), CPV, \theta_{23}, \Delta m_{23}^2)$
 - Reactor-based v_e disappearance: single purpose (θ₁₃), complementary

v_e(bar) disappearance $(\theta_{12}, \Delta m_{12}^2)$ • Combined results of

- Solar neutrino observations (SK, SNO, ...)
- Reactor anti-v observation (KamLAND)
- Large mixing!

J.N. Bahcall et al., J. High Energy Phys. (2003)

T2K experiment

Long baseline neutrino oscillation experiment from Tokai to Kamioka.

Physics motivations

•Discovery of $V_{\mu \rightarrow} V_e$ appearance •Precise meas. of disappearance $V_{\mu \rightarrow} V_X$ •Discovery of CP violation (Phase2)

J-PARC Facility

J-PARC status

- •Buildings for LINAC and 3GeVPS finished.
- North-east part of tunnel for 50GeVPS finished.
- •South-west part of tunnel will finish in FY2006.
- •First beam on 50GeV PS in FY2008

Expected Beam Power

Neutrino facility

Components

- Primary proton beam line
- Target/Horns
- Decay volume (130m)
- Beam dump
- Muon monitor
- Near neutrino detector (280m)
- Second near neutrino detector (~2km): future option

Proton beam line

Arc section

Superconducting magnet

Prototype magnet worked•as designed•without quench

Target and horns

Graphite target in 1st horn
3 horns made with Aluminum
Water cooling test for horn finished
320kA pulse current test in this year

 Prototype inner & outer conductor for 1st horn

Target

•Carbon graphite target: 30mm(D)x900mm(L)

•2 interaction length (70% int.)

•Energy deposit: 58kJ/spill

Energy deposit in the target (/ 1 spill) J/g

streamline of He gas

•Cooled by He gas at outer surface (640W/m²K achieved)

Prototype of target and cooling tube

Off-axis beam

Decay Volume

Off-axis beam at SK/HK

Copyright(C)2001 ALPS M

Cover this region

Civil construction of DV

Oct. 26, 2004

Beam dump & Muon monitor

Neutrino detectors

- Near detector @280m
 - Neutrino intensity/spectrum/direction
 - Two detector systems for on and off axis.
- Second Near Detector @2km
 - In future option to reduce systematic errors
 - v_{μ} energy spectrum and v_e background study with almost same condition as for SK
- Far Detector @295km: Super Kamiokand
 - \Rightarrow at session 5 of WG1 on June 23
Schedule of v beam line

