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The Concept Goals and Overview

Basics of the VLBL Concept

The VLBL concept consists of three simple ideas:

1 Use a very long baseline,

2 a wide band ν-beam,

3 at high ν-energies.

This allows an ambitious but affordable experiment which is qualitatively
different than previous or planned LBL experiments.

It is sensitive to multiple physical effects.

Allows one to break parameter degeneracies.

Rough measurement of δCP and θ13 with only ν-running.

If we get lucky with the true parameter values, these statements can be
made more strongly.
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The Concept Motivations for Basic Parameters

Why Long, Wide and High?

1 Wide → see
multiple
oscillations

2 High → avoid
Fermi motion

3 High ∴ Long

Blue bars show
flux coverage (full
width at 10%
peak)
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The Concept Natural Benefits to Going High Energy

Natural Background Reduction
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 = 1-10 GeVν for E0πE

Putting some νµ → νe signal at high
energy, gain strong suppression of
NC bkg via Q2 kinematic cutoff

Nuance MC

Q2 (top) and Eπ0 (bottom) for
single-π NC events

Each color band:
mono-energetic neutrinos, 1-10
GeV in 1 GeV steps.

At Eν > 2 GeV get > 50×
natural background reduction
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Oscillation Probability Illustrations

Oscillation Probability Illustrations

Unless noted, the values used are:

∆m2
21 = 8.0e-5 eV2. KamLAND/SK/SNO.

∆m2
32 = 2.5e-3 eV2. Super-Kamiokande.

sin2(2θ23) = 1.0. SK atmospheric maximal mixing.

sin2(2θ12) = 0.86. SK/SNO solar mixing.

sin2(2θ13) = 0.04. CHOOZ limited: use “not too big, not too small”.

δCP = 0. Totally unknown.

Baseline = 2540 km (other, short baselines shown for comparison)

Matter effects using PREM Earth density and electron fraction profile.

Probability plots:

Energy range will reflect full-width-10%-max coverage.

Flash short baseline examples to compare.
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Oscillation Probability Illustrations Disappearance

Multiple Disappearance Oscillations Well Covered!
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) at 2540 kmµ,µP(

Multiple wiggles!

No problem resolving “the dip”,
will see more than one!

Nodes well placed across flux
coverage, robust against ∆m2

change.
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Oscillation Probability Illustrations Disappearance

Disappearance at Short Baselines

At most one dip to see. Can slip away if ∆m2 ends up low.
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Oscillation Probability Illustrations Appearance

Rich Appearance Effects

The Very Long Baseline approach makes available a rich set of appearance
effects.

Multiple Appearance Peaks

Matter Effects

CP Violation

νe Appearance with θ13 = 0!

Since these effects occur differently across the spectrum in a Very Long
Baseline experiment, they can be disentangled with a single experiment.
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Oscillation Probability Illustrations Appearance

Multiple Appearance Peaks Covered

 (GeV)
ν

E
1 2 3 4 5 60

0.01

0.02

0.03

0.04

0.05

0.06

,e) at 2540 kmµP(

 = 2.3e-332
2 m∆

 = 2.5e-332
2 m∆

 = 2.8e-332
2 m∆

Brett Viren, 2005/06/20

,e) at 2540 kmµP(

Multiple peaks covered

Robust against ∆m2

change
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Oscillation Probability Illustrations Appearance

Appearance at Short Baselines
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Oscillation Probability Illustrations Appearance

Rich Appearance Effects

The Very Long Baseline approach makes available a rich set of appearance
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Oscillation Probability Illustrations Appearance

Matter Effects at Very Long Baselines
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,e) at 2540 kmµP(

Sensitivity to sign(∆m2)

Factor of 2 effect →
“easy”

Effect mostly in first
peak Eν > 2 GeV
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Oscillation Probability Illustrations Appearance

Matter Effects at Short Baselines
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Oscillation Probability Illustrations Appearance

Rich Appearance Effects

The Very Long Baseline approach makes available a rich set of appearance
effects.

Multiple Appearance Peaks
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Oscillation Probability Illustrations Appearance

Nonzero CP Angle at Very Long Baselines
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Shift in magnitude and
location

Stronger effect for oscil
peak n > 1
(W.Marciano)

Longer baseline pulls
n > 1 away from
Fermi-motion region.
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Oscillation Probability Illustrations Appearance

Nonzero CP Angle at Short Baselines
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Oscillation Probability Illustrations Appearance

Rich Appearance Effects

The Very Long Baseline approach makes available a rich set of appearance
effects.

Multiple Appearance Peaks

Matter Effects

CP Violation

νe Appearance with θ13 = 0!

Since these effects occur differently across the spectrum in a Very Long
Baseline experiment, they can be disentangled with a single experiment.
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Oscillation Probability Illustrations Appearance

Guaranteed νe Appearance
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,e) at 2540 kmµP(

What if θ13 = 0 ?
Still observe νe via ∆m2

21 !

θ13 = 0 in black

θ13 6= 0 in blue

Upswing at low energies
is due to ∆m2

21.

Small shift if
non-maximal mixing

This over constrains the solar
parameters - potential to see
new physics!
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Oscillation Probability Illustrations Appearance

θ13 = 0 at Short Baselines
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Oscillation Probability Illustrations Appearance

Rich Appearance Effects

The Very Long Baseline approach makes available a rich set of appearance
effects.

Multiple Appearance Peaks

Matter Effects

CP Violation

νe Appearance with θ13 = 0!

Since these effects occur differently across the spectrum in a Very Long
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Oscillation Probability Illustrations Appearance

Sensitivity to Different Parameters in Different Energy
Regions

Eν < 1 GeV 1 < Eν2 <GeV Eν > 2 GeV

sin2 2θ13
√ √ √

sign(∆m2
32) - -

√√√

δCP
√ √√ √

solar
√√√ √

-

It’s a complex picture with many effects!

But, effects have different strength at different energies.

Measuring across the wide energy band makes it possible to sort them
out.
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Example: BNL to Homestake

Example Baseline: 2540 km

BNL

Homestake, SD

Henderson, CO 2770 km2770 km BNL

Homestake, SD 2540 km2540 km

Henderson, CO

Homestake & Henderson equivalent. Assume UNO class far detector.
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Example: BNL to Homestake

Neutrino Flux

The following is work by Milind Diwan.

BNL Wide Band. Proton Energy = 28 GeV
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O

T 
at

 1
 k
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νµ

νe νe/νµ = 0.007

ν running:

1 MW, 28 GeV proton beam

5× 107 seconds

1.12× 1022 PoT

60 cm carbon target

4 m φ× 200 m long decay
tunnel

ν̄ running same but 2 MW
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Example: BNL to Homestake Event Rate

Expected Number of Events

1 MW ν running

Water-Cherenkov
detector

500 kTon water fiducial

2540 km baseline

5× 107 seconds exposure

Reaction Number

CC νµ + N → µ− + X 51800
NC νµ + N → νµ + X 16908
CC νe + N → e− + X 380

QE νµ + n → µ− + p 11767
QE νe + n → e− + p 84

CC νµ + N → µ− + π+ + N 14574
NC νµ + N → νµ + N + π0 3178
NC νµ + O16 → νµ + O16 + π0 574

CC ντ + N → τ− + X 319
(if all νµ → ντ )
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Example: BNL to Homestake Disappearance

Disappearance at 2540 km

νµ DISAPPEARANCE
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E
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sin22θ23 = 1.0

∆m2 32 = 2e-3 eV2

1 MW, 0.5 MT, 5e7 sec

No oscillations: 13290 evts

With oscillations: 5936 evts

Background: 1111 evts

10% energy resolution + Fermi
motion

2 nodes clearly visible

Black and red include
background

Only single-π production bkg
considered here

σ(∆m2
32) & σ(sin2(2θ23)) ∼ 1%

Resolution dominated by
systematics
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Example: BNL to Homestake Appearance

Expected Appearance Results

1 Weighted SK Atm-ν MC/reconstruction study (C. Yanagisawa)

2 Baseline requirements study (M. Diwan)

3 In progress: full study with UNO detector MC and realistic
reconstruction code.
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Example: BNL to Homestake Appearance

C. Yanagisawa - weighted SK Atm-ν MC study

Improved π0 finder + likelihood cut.
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Example: BNL to Homestake Appearance

Appearance - Baseline Requirements Study

M. Diwan, close but stricter requirements still:
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Example: BNL to Homestake Appearance

Sensitivity of δCP and θ13

1-σ and 90% contours, all other parameters fixed.

Resolution δCP vs Sin22θ13
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Example: BNL to Homestake Appearance

Sensitivity of δCP and θ13 - Combined ν/ν̄

1-σ contours, all other parameters fixed.

Regular hierarchy νυ and Antiνυ running
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Example: BNL to Homestake Appearance

Patrick Huber, UWisc:

Both ν- and ν̄-running.

Includes correlations and errors on all parameters, 10% background
uncertainty.

Will improve as other oscillation parameter measurements improve.

All δCP range covered.
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Making Very Long Baseline Neutrinos at BNL
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Making Very Long Baseline Neutrinos at BNL AGS Upgrade

Upgrade to AGS

BOOSTER

High Intensity Source

plus RFQ

To RHIC

400 MeV

800 MeV

1.2 GeV

To Target Station

AGS
1.2 GeV 28 GeV

0.4 s cycle time (2.5 Hz)

0.2 s 0.2 s

200 MeV

200 MeV Drift Tube Linac

Superconducting Linacs

Use 1.2 GeV SC Linac instead of booster
I 7× 1013 → 9× 1013 ppp
I Fill time 0.6 sec → 1.0 msec

Increase rep. rate 0.5 → 2.5 Hz
New mag. PS and RF cavities
Further improvements on design being worked on.
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Making Very Long Baseline Neutrinos at BNL BNL Site Development

BNL Site Development

Point to most points west

Keep hadrons above the water table

Room for a (very) near detector

Hill cheaper than tunnel
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Making Very Long Baseline Neutrinos at BNL Target and Horn

Conventional pulsed hadron focussing with 2 horns

Likely carbon-carbon target, embedded in 1st horn

R&D underway with material experiments

Collaboration with FNAL, JPARC and others
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Making Very Long Baseline Neutrinos at BNL Price Tag

Estimated Costs

October 1, 2004 BNL-73210-2004-IR

The AGS-Based Super Neutrino Beam Facility

Conceptual Design Report

Editor: W. T. Weng, M. Diwan, and D. Raparia

Contributors and Participants

J. Alessi, D. Barton, D. Beavis, S. Bellavia, I. Ben-Zvi, J. Brennan, M. Diwan,

P. K. Feng, J. Gallardo, D. Gassner, R. Hahn, D. Hseuh, S.Kahn, H. Kirk,

Y. Y. Lee, E. Lessard, D. Lowenstein, H. Ludewig, K. Mirabella,

W. Marciano, I. Marneris, T. Nehring, C. Pearson, A. Pendzick,

P. Pile, D. Raparia, T. Roser, A. Ruggiero, N. P. Samios,

N. Simos, J. Sandberg, N. Tsoupas, J. Tuozzolo, B. Viren,

J. Beebe-Wang, J. Wei, W. T. Weng, N. Williams,

P. Yamin, K. C. Wu, A. Zaltsman,

S. Y. Zhang, Wu Zhang

Brookhaven National Laboratory

Upton, NY 11973
October 1, 2004

Put through internal BNL review

Bottom-up estimation with WBS

Based on RHIC & SNS ring, LHC
magnets.

Target & Horn from BNL, K2K and
NuMI.

$273.4M FY04

6 Years to neutrinos
I 3 years R&D
I Construction after 1 year
I 4.5 years to completion
I 0.5 year commissioning
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Making Very Long Baseline Neutrinos at BNL Price Tag

Summary

The BNL Very Long Baseline concept provides a qualitatively
different experiment than past or proposed

Precision (1%) measurement of atm-ν params, systematics limited.

Degeneracy-broken measurement of appearance parameters

If lucky, ν-running only needed for appearance measurements, with
ν̄-running gain precision w/out needing luck.

Appearance results limited by how well background can be controlled

Work on full detector simulation and reconstruction to be finished
before final word.

Affordable, practical beam design. No “magic” needed.

Ongoing collaborations (C. Yanagisawa (UNO), P. Huber (GLoBES)),
others most welcome!
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Making Very Long Baseline Neutrinos at BNL Price Tag
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Backup Slides
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CP Violation Sensitivity Independent of Baseline

1 GeV neutrino, vacuum
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Brett Viren, bv@bnl.gov, 06/04/2004

Marciano,
hep-ph/0108181

A ∼ L

Flux ∼ 1/L2

Statistical F.O.M.
I = (∆A/A)−2

= A2N/(1− A)
I N = Nνe + Nν̄e

I Linear in flux
I Quadratic in A

Independent of BL, at least
until the flux totally runs out.
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Resolution on θ23 and ∆m2
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Not strongly sensitive on
normalization
uncertainty due to
multi-nodal spectrum
shape.
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