## NuFact05 workshop

## Resolving parameter degeneracies in long-baseline experiments with atmospheric neutrino data

Thomas Schwetz SISSA, Trieste

based on:

P. Huber, M. Maltoni, TS, PRD 71 (2005) 053006 [hep-ph/0501037]

T. Schwetz, NuFact05, Frascati, Italy, 21–26 june 2005 – p.1

## Introduction

Goals for future neutrino oscillation experiments:

## Introduction

#### Goals for future neutrino oscillation experiments:

• How small is  $\theta_{13}$ ?

Goals for future neutrino oscillation experiments:

- How small is  $\theta_{13}$ ?
- What is the value of the CP phase  $\delta_{\rm CP}$ ?

Goals for future neutrino oscillation experiments:

- How small is  $\theta_{13}$ ?
- What is the value of the CP phase  $\delta_{\rm CP}$ ?
- Type of the neutrino mass ordering (sign of  $\Delta m^2_{31}$ )



#### Parameter degeneracies in LBL experiments

G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667
J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301
M. Koike, T. Ota, J. Sato, Phys. Rev. D65 (2002) 053015
H. Minakata, H. Nunokawa, JHEP 10 (2001) 001
V.Barger, D.Marfatia, K.Whisnant, Phys. Rev. D65 (2002) 073023; D66 (2002) 053007
P.Huber, M.Lindner, W.Winter, Nucl. Phys. B645 (2002) 3; Nucl. Phys. B654 (2003) 3
J. Burguet-Castell et al., Nucl.Phys. B646 (2002) 301
O. Yasuda, New J. Phys. 6 (2004) 83
A.Donini, D.Meloni, S.Rigolin, JHEP 0406 (2004) 011

and many more (I appologize for omissions)

#### • The intrinsic or $(\delta_{CP}, \theta_{13})$ degeneracy J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301 several solutions in the $(\delta_{CP}, \theta_{13})$ plane

 $P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2$  $+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})$ 

- The intrinsic or  $(\delta_{CP}, \theta_{13})$  degeneracy J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301 several solutions in the  $(\delta_{CP}, \theta_{13})$  plane
- The hierarchy or sgn( $\Delta m_{31}^2$ ) degeneracy H. Minakata, H. Nunokawa, JHEP 10 (2001) 001

solutions for both signs of  $\Delta m_{31}^2$  (affects mainly  $\delta_{CP}$ )

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2 + \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})$$

- The intrinsic or  $(\delta_{CP}, \theta_{13})$  degeneracy J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301 several solutions in the  $(\delta_{CP}, \theta_{13})$  plane
- The hierarchy or sgn( $\Delta m_{31}^2$ ) degeneracy H. Minakata, H. Nunokawa, JHEP 10 (2001) 001 solutions for both signs of  $\Delta m_{31}^2$  (affects mainly  $\delta_{\rm CP}$ )
- The octant or θ<sub>23</sub> degeneracy
   G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667

 $\nu_{\mu}$ -disappearance chanel gives only  $\sin^2 2\theta_{23}$ solutions for  $\theta_{23}$  and  $\pi/2 - \theta_{23}$  (affects mainly  $\sin^2 2\theta_{13}$ )

 $P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2$  $+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})$ 

- The intrinsic or  $(\delta_{CP}, \theta_{13})$  degeneracy J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301 several solutions in the  $(\delta_{CP}, \theta_{13})$  plane
- The hierarchy or sgn( $\Delta m_{31}^2$ ) degeneracy H. Minakata, H. Nunokawa, JHEP 10 (2001) 001 solutions for both signs of  $\Delta m_{31}^2$  (affects mainly  $\delta_{\rm CP}$ )
- The octant or θ<sub>23</sub> degeneracy
   G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667

 $\nu_{\mu}$ -disappearance chanel gives only  $\sin^2 2\theta_{23}$ solutions for  $\theta_{23}$  and  $\pi/2 - \theta_{23}$  (affects mainly  $\sin^2 2\theta_{13}$ )

#### overall an 8-fold degeneracy

V.Barger, D.Marfatia, K.Whisnant, Phys. Rev. D65 (2002) 073023

## The T2K-II long-baseline experiment

4 MW superbeam at JPARC mean neutrino energy: 0.76 GeV (2° OA) 1 Mt Cherenkov detector at Kamioka baseline: 295 km

|                                                   | ν <b>(2 Mt yrs)</b> | $\bar{\nu}$ (6 Mt yrs) |
|---------------------------------------------------|---------------------|------------------------|
| $ u_{\mu} \rightarrow \nu_{e} \text{ signal} $    | 21 300              | 16 000                 |
| $ u_{\mu} \rightarrow  u_{e} \text{ background} $ | 2 1 4 0             | 3 260                  |
| $ u_{\mu}  ightarrow  u_{\mu}$ signal             | 73 200              | 75 600                 |
| $ u_{\mu}  ightarrow  u_{\mu}$ background         | 340                 | 320                    |

 $\sin^2 2\theta_{13} = 0.05, \ \sin^2 \theta_{23} = 0.5, \ \sin^2 \theta_{12} = 0.3, \ \delta_{\rm CP} = 0,$  $\Delta m_{21}^2 = 8.1 \times 10^{-5} \ {\rm eV}^2, \ \Delta m_{31}^2 = 2.2 \times 10^{-3} \ {\rm eV}^2$ 

## The T2K-II long-baseline experiment

4 MW superbeam at JPARC mean neutrino energy: 0.76 GeV (2° OA) 1 Mt Cherenkov detector at Kamioka baseline: 295 km

|                                                  | ν <b>(2 Mt yrs)</b> | $\bar{\nu}$ (6 Mt yrs) |
|--------------------------------------------------|---------------------|------------------------|
| $ u_{\mu} \rightarrow \nu_{e} \text{ signal} $   | 21 300              | 16 000                 |
| $ u_{\mu}^{} \rightarrow  u_{e}^{} $ background  | 2 1 4 0             | 3 260                  |
| $ u_{\mu} \rightarrow \nu_{\mu} \text{ signal} $ | 73 200              | 75 600                 |
| $ u_{\mu}  ightarrow  u_{\mu}$ background        | 340                 | 320                    |

GLoBES software P. Huber, M. Lindner, W. Winter, hep-ph/0407333

http://www.ph.tum.de/~globes/



allowed regions at  $2\sigma$ , 99%,  $3\sigma$  CL

true values:  $\sin^2 2\theta_{13} = 0.03$   $\delta_{\rm CP} = -0.85\pi$   $\sin^2 \theta_{23} = 0.4$  $\Delta m_{31}^2 = 2.2 \times 10^{-3} {\rm eV}^2$ 

The ( $\delta_{CP}$ ,  $\theta_{13}$ ) degeneracy is not present for T2K-II because of spectral information



allowed regions at  $2\sigma$ , 99%,  $3\sigma$  CL

true values:  $\sin^2 2\theta_{13} = 0.03$   $\delta_{\rm CP} = -0.85\pi$   $\sin^2 \theta_{23} = 0.4$  $\Delta m_{31}^2 = 2.2 \times 10^{-3} {\rm eV}^2$ 



allowed regions at  $2\sigma$ , 99%,  $3\sigma$  CL

true values:  $\sin^2 2\theta_{13} = 0.03$   $\delta_{\rm CP} = -0.85\pi$   $\sin^2 \theta_{23} = 0.4$  $\Delta m_{31}^2 = 2.2 \times 10^{-3} {\rm eV}^2$ 

![](_page_15_Figure_1.jpeg)

allowed regions at  $2\sigma$ , 99%,  $3\sigma$  CL

true values:  $\sin^2 2\theta_{13} = 0.03$   $\delta_{\rm CP} = -0.85\pi$   $\sin^2 \theta_{23} = 0.4$  $\Delta m_{31}^2 = 2.2 \times 10^{-3} {\rm eV}^2$ 

ambiguities in  $\theta_{13}$  and  $\delta_{CP}$ no information on the hierarchy

#### several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines
- using additional oscillation chanels ( $\nu_e \rightarrow \nu_{\tau}$ )
- spectral information (broadband beam)
- adding information on  $\theta_{13}$  from a reactor experiment

#### several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines
- using additional oscillation chanels  $(\nu_e \rightarrow \nu_{\tau})$
- spectral information (broadband beam)
- adding information on  $\theta_{13}$  from a reactor experiment

#### we propose a new method based on ...

#### **3-flavour effects in atmospheric neutrinos**

Petcov, Phys. Lett. B434, 321 (1998), hep-ph/9805262 Akhmedov, Nucl. Phys. B538, 25 (1999), hep-ph/9805272 Akhmedov, Dighe, Lipari, Smirnov, Nucl. Phys. B542, 3 (1999), hep-ph/9808270 Kim, Lee, Phys. Lett. B444, 204 (1998), hep-ph/9809491 Bernabeu, Palomares-Ruiz, Perez, Petcov, Phys. Lett. B531, 90 (2002), hep-ph/0110071 Bernabeu, Palomares-Ruiz, Petcov, Nucl. Phys. B669, 255 (2003), hep-ph/0305152 Peres, Smirnov, Phys. Lett. B456, 204 (1999), hep-ph/9902312 Peres, Smirnov, Nucl. Phys. B680, 479 (2004), hep-ph/0309312 Gonzalez-Garcia, Maltoni, Eur. Phys. J. C26, 417 (2003), hep-ph/0202218 Gonzalez-Garcia, Maltoni, Smirnov, Phys. Rev. D70, 093005 (2004), hep-ph/0408170

again I appologize for omissions

## 3-flavour effects in atmospheric neutrinos

excess of electron-like events:

$$\begin{split} \frac{N_e}{N_e^0} - 1 \simeq & (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13}) & \theta_{13} \text{-effects} \\ & + & (r \, c_{23}^2 - 1) \, P_{2\nu}(\Delta m_{21}^2, \theta_{12}) & \Delta m_{21}^2 \text{-effects} \\ & - & 2s_{13}s_{23}c_{23} \, r \, \text{Re}(A_{ee}^* A_{\mu e}) & \text{interference: } \delta_{\text{CP}} \end{split}$$

$$r = r(E_{\nu}) \equiv \frac{F_{\mu}^{0}(E_{\nu})}{F_{e}^{0}(E_{\nu})} \qquad r \approx 2 \quad \text{(sub-GeV)}$$
$$r \approx 2.6 - 4.5 \quad \text{(multi-GeV)}$$

 $\theta_{13}$ -effects

$$\frac{N_e}{N_e^0} - 1 \simeq (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13})$$

resonant matter effect in  $P_{2\nu}(\Delta m_{31}^2, \theta_{13})$ for multi-GeV events ( $r \approx 2.6 - 4.5$ )

normal hierarchy: enhancement for neutrinos inverted hierarchy: enhancement for anti-neutrinos

detection cross sections are different for neutrinos and anti-neutrinos

sensitivity to the neutrino mass hierarchy

 $\theta_{13}$ -effects

$$\frac{N_e}{N_e^0} - 1 \simeq (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13})$$

![](_page_21_Figure_2.jpeg)

Bernabeu, Palomares-Ruiz, Petcov, Nucl. Phys. B669, 255 (2003), hep-ph/0305152

 $\Delta m_{21}^2$ -effects

 $\frac{N_e}{N^0} - 1 \simeq (r c_{23}^2 - 1) P_{2\nu}(\Delta m_{21}^2, \theta_{12})$ 

![](_page_22_Figure_2.jpeg)

Peres, Smirnov, hep-ph/0309312

contours of  $\frac{N_e}{N_e^0} - 1$ 

relevant for sub-GeV events

#### sensitivity to the octant of $\theta_{23}$

# 3-flavour effects in atmospheric neutrinos

![](_page_23_Figure_1.jpeg)

plot from T. Kajita

# The HK atmospheric neutrino experiment

#### assume 9 Mt yrs ATM data (100 $\times$ SK-I data)

|                       | zenith angle                            | ν       | $ar{ u}$ |
|-----------------------|-----------------------------------------|---------|----------|
| e-like sub-GeV        | 10 bins                                 | 239 000 | 58 000   |
| e-like multi-GeV      | 10 bins                                 | 52700   | 18100    |
| $\mu$ -like sub-GeV   | 10 bins                                 | 232 000 | 66 200   |
| $\mu$ -like multi-GeV | 10 bins                                 | 108 000 | 49100    |
| upward going $\mu$    | $10_{\mathrm{thr}}$ + $5_{\mathrm{st}}$ | 127 000 | 65 400   |

 $\sin^2 2\theta_{13} = 0.05, \sin^2 \theta_{23} = 0.5, \sin^2 \theta_{12} = 0.3, \delta_{\rm CP} = 0,$  $\Delta m_{21}^2 = 8.1 \times 10^{-5} \text{ eV}^2, \Delta m_{31}^2 = 2.2 \times 10^{-3} \text{ eV}^2$ 

# The HK atmospheric neutrino experiment

#### assume 9 Mt yrs ATM data (100 $\times$ SK-I data)

|                       | zenith angle                | ν       | $\bar{ u}$ |
|-----------------------|-----------------------------|---------|------------|
| e-like sub-GeV        | 10 bins                     | 239 000 | 58 000     |
| e-like multi-GeV      | 10 bins                     | 52700   | 18100      |
| $\mu$ -like sub-GeV   | 10 bins                     | 232 000 | 66 200     |
| $\mu$ -like multi-GeV | 10 bins                     | 108 000 | 49100      |
| upward going $\mu$    | $10_{ m thr}$ + $5_{ m st}$ | 127 000 | 65 400     |

#### WARNING:

- same systematics as SK-I
- same binning (zenith angle, energy) as SK-I
- only single-ring events

## The ATM analysis

## • Full numerical three-flavour analysis

both \$\Delta m\_{31}^2\$ and \$\Delta m\_{21}^2\$ taken into account
realistic treatment of earth matter effects

based on:

Gonzalez-Garcia, Maltoni, Pena-Garay, Valle, Phys. Rev. D **63** (2001) 033005 Gonzalez-Garcia, Maltoni, Eur. Phys. J. C **26** (2003) 417 [hep-ph/0202218] Maltoni, TS, Tortola, Valle, Phys. Rev. D **67** (2003) 013011 [hep-ph/0207227] Gonzalez-Garcia, Maltoni, Smirnov, Phys. Rev. D **70** (2004) 093005 [hep-ph/0408170]

## The ATM analysis

#### • Full numerical three-flavour analysis

both \$\Delta m\_{31}^2\$ and \$\Delta m\_{21}^2\$ taken into account
realistic treatment of earth matter effects

#### based on:

Gonzalez-Garcia, Maltoni, Pena-Garay, Valle, Phys. Rev. D **63** (2001) 033005 Gonzalez-Garcia, Maltoni, Eur. Phys. J. C **26** (2003) 417 [hep-ph/0202218] Maltoni, TS, Tortola, Valle, Phys. Rev. D **67** (2003) 013011 [hep-ph/0207227] Gonzalez-Garcia, Maltoni, Smirnov, Phys. Rev. D **70** (2004) 093005 [hep-ph/0408170]

Combined with LBL data by using a generalized version of the GLoBES software

![](_page_29_Figure_1.jpeg)

solid curves: LBL only allowed regions at  $2\sigma$ , 99% and  $3\sigma$  CL (2 dof) true values:  $\sin^2 2\theta_{13} = 0.03$ ,  $\delta_{\rm CP} = -0.85\pi$ ,  $\Delta m_{31}^2 = 2.2 \cdot 10^{-3} {\rm eV}^2$ 

![](_page_30_Figure_1.jpeg)

solid curves: LBL only, colored regions: LBL+ATM allowed regions at  $2\sigma$ , 99% and  $3\sigma$  CL (2 dof) true values:  $\sin^2 2\theta_{13} = 0.03$ ,  $\delta_{\rm CP} = -0.85\pi$ ,  $\Delta m_{31}^2 = 2.2 \cdot 10^{-3} {\rm eV}^2$ 

![](_page_31_Figure_1.jpeg)

solid curves: LBL only, colored regions: LBL+ATM allowed regions at  $2\sigma$ , 99% and  $3\sigma$  CL (2 dof) true values:  $\sin^2 2\theta_{13} = 0.03$ ,  $\delta_{\rm CP} = -0.85\pi$ ,  $\Delta m_{31}^2 = 2.2 \cdot 10^{-3} {\rm eV}^2$ 

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

## Which are the relevant ATM data samples?

![](_page_34_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Picture_0.jpeg)

## **Do we really need a Mt experiment?**

## Luminosity scaling

![](_page_40_Figure_1.jpeg)

## CERN-Frejus LBL experiments (PRELIMINARY)

work in progress in collaboration with J.E. Campagne and M. Mezzetto

## CERN-Frejus LBL experiments (PRELIMINARY)

work in progress in collaboration with J.E. Campagne and M. Mezzetto

#### Beta Beam

see talk of M. Mezzetto for details  $\bar{\nu}$ : <sup>6</sup>He ( $\gamma = 100$ ),  $\nu$ : <sup>18</sup>Ne ( $\gamma = 100$ ), 10 yrs data

## CERN-Frejus LBL experiments (PRELIMINARY)

work in progress in collaboration with J.E. Campagne and M. Mezzetto

#### Beta Beam

see talk of M. Mezzetto for details  $\bar{\nu}$ : <sup>6</sup>He ( $\gamma = 100$ ),  $\nu$ : <sup>18</sup>Ne ( $\gamma = 100$ ), 10 yrs data

## SPL Superbeam

see talk of J.E. Campagne for details

3.5 GeV proton beam from 4 MW SPL, 2 yrs  $\nu$ , 8 yrs  $\bar{\nu}$ 

## CERN-Frejus LBL experiments (PRELIMINARY)

work in progress in collaboration with J.E. Campagne and M. Mezzetto

#### Beta Beam

see talk of M. Mezzetto for details  $\bar{\nu}$ : <sup>6</sup>He ( $\gamma = 100$ ),  $\nu$ : <sup>18</sup>Ne ( $\gamma = 100$ ), 10 yrs data

## SPL Superbeam

see talk of J.E. Campagne for details 3.5 GeV proton beam from 4 MW SPL, 2 yrs  $\nu$ , 8 yrs  $\bar{\nu}$ 

 450 kt water Cherenkov detector at Frejus baseline 130 km

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_1.jpeg)

#### sensitivity to the mass hierarchy

![](_page_47_Figure_2.jpeg)

## **Concluding remarks**

 sensitivity to the neutrino mass ordering significantly increased

- sensitivity to the neutrino mass ordering significantly increased
- good sensitivity to the octant of  $\theta_{23}$

- sensitivity to the neutrino mass ordering significantly increased
- good sensitivity to the octant of  $\theta_{23}$
- ambiguities in the determination of  $\sin^2 2\theta_{13}$  and  $\delta_{\rm CP}$  can be resolved

- sensitivity to the neutrino mass ordering significantly increased
- good sensitivity to the octant of  $\theta_{23}$

- ambiguities in the determination of  $\sin^2 2\theta_{13}$  and  $\delta_{\rm CP}$  can be resolved

given the Mt detector for the LBL experiment, ATM data come for free!

# Concluding remarks

#### Complementarity of LBL and ATM data:

Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of  $\theta_{23}$ 

Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of  $\theta_{23}$
- The determination of  $\Delta m_{31}^2$  and  $\sin^2 2\theta_{23}$  at the sub-percent level and a constraint on  $\sin^2 2\theta_{13}$  from LBL data is necessary

Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of  $\theta_{23}$
- The determination of  $\Delta m_{31}^2$  and  $\sin^2 2\theta_{23}$  at the sub-percent level and a constraint on  $\sin^2 2\theta_{13}$  from LBL data is necessary

#### Thank you for your attention!

P. Huber, M. Maltoni, TS, PRD 71 (2005) 053006 [hep-ph/0501037]

## additional slides

![](_page_59_Figure_1.jpeg)

 $\sin^2 2\theta_{13} = 0.01$  $\delta_{\rm CP} = \pi/4$  $\sin^2 \theta_{23} = 0.3$ 

$$R = \frac{N_i^{\rm tr} - N_i^{\rm deg}}{\sqrt{(N_i^{\rm tr} + N_i^{\rm deg})/2}}$$

P.Huber, M.Lindner, W.Winter, Nucl. Phys. B645 (2002) 3

## The intrinsic degeneracy is absent for T2K-II

## Additional slides

![](_page_60_Figure_1.jpeg)

## *True* $\theta_{13} = 0$

#### Resolving the octant-degeneracy:

![](_page_61_Figure_2.jpeg)

*True*  $\theta_{13} = 0$ 

## The limit on $\sin^2 2\theta_{13}$ :

![](_page_62_Figure_2.jpeg)

#### dashed: LBL only, solid: LBL+ATM

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \dots$$