

Neutrino oscillations from CERN to Pyhäsalmi

Juha Peltoniemi

CUPP-project cupp.oulu.fi

The CUPP project

Location of the site

- Main office University of Oulu
- Pyhäsalmi mine in Pyhäjärvi town
 - Also an abandoned sidemine, down to 700 m available nearby
- Connections
 - roads open all year round
 - Pyhäjärvi-Oulu: 2 h car drive
 - Pyhäjärvi-Jyväskylä: 2 h car drive
 - Pyhäjärvi-Helsinki: bus & train connections
 - 4 aiports within 2 hours drive, connections
 - Oulu-Helsinki: ca 20 flights a day
 - Oulu-Stockholm: 1–4 flights a day
 - Oulu-Copenhagen: 1 flight a day
 - Oulu-Tampere: 2 flights
 - To London, Stockholm, Copenhagen, Tallinn

Pyhäsalmi Mine

- Pyhäsalmi Mine Ltd
 - Inmet Mining Corporation, Canada
 - produces zinc, copper and pyrite
- The old mine
 - about 1050 m deep
 - operated 1962–2001
- The new mine
 - active since July 2001
 - known ore reserves until ca 2017
 - greatest depth 1444 m
 - the deepest metal mine in Europe
 - access by lift (2 min) or via decline by car (40 min) or by running (1 h 4 min)

Neutrino baseline from CERN to Pyhäsalmi

- Distance 2288 km
- The baseline density profile modelled
 - Kozlovskaya, Peltoniemi and Sarkamo, hep-ph/0305042
 - good geophysical data available
 - Can do accurate simulations for matter effect

Neutrino beams to Pyhäsalmi

- Neutrino factory
 - 10-50 GeV pure muon (anti)neutrino beam
- Conventional beams (by pion decay)
 - Wide band beam
 - Narrow band beam/off-axis beam
- Betabeams
 - Pure electron (anti)neutrino beam
 - Need higher energies

Oscillation probabilities for L=2300 km

- Sample plots for muon neutrino appearance from electron neutrino beam
 - "usual best fit parameters"

Experimental potential

- Reach in $\sin^2 2\theta_{13}$
 - ✤ 20 GeV,
 - 10²⁰ muons per year
 - 10 and 100 ktonyears

Conventional beam 10-30 GeV

- Duplication of CERN CNGS beam facility
 - Beam cost some 50 MEUR
- Energy range 10-30 GeV
- Study tau appearance
 - Relevance depends on the results of OPERA/ICARUS
- Flux density ca 1/10 of that in Gran Sasso
 - Need larger detectors
- Technically realistic

Conventional wide band beam 1-6 GeV

- Observation of multiple nodes
- E.g., with 1 MW beam (from CERN) and 100 kton year:
 - 10 000 muon CC events, 3 500 NC events with no oscillations
- Planned SPL not sufficient need higher energy or SPS for acceleration

Off-axis detectors

High energy beta beam

- Physically interesting range:
 - antineutrinos: $\gamma \sim 1000 \ (< E_{y} > \sim 4 \ GeV)$ for ⁶He decay
 - neutrinos: $\gamma \sim 2000$ (<E_y> ~ 7 GeV) for ¹⁸Ne decay
- Use LHC to accelerate ions
 - Technically possible
 - Availability and economic feasibility not yet clear
- Longer baseline and higher energy as compared to 130 km
 - Matter effects visible
 - Expect clear difference between neutrinos and antineutrinos
 - Other kind of detector may be preferred
 - e.g. liquid argon, iron calorimeter
 - Event rates an order of magnitude larger
 - For fixed number of decays and fixed L/E
 - May study tau appearance

Other baselines

- "Magic baseline" 7250 km (Winter et al)
- Clean measurement of mixing angle, insensitive to CP angle
- Distance to Pyhäsalmi:
 - JHF: ca 7200 km [almost perfect baseline!]
 - Fermilab: 6500-7000 km
 - BNL: ca 6200 km

Possibilities to host detectors in Pyhäsalmi

- Technically possible to construct large caverns relatively easy
 - Rock mechanics of 20 m x 20 m x 100 m cavern analysed
 - Very large caverns (1 000 000 m³) not studied in detail
- No unavoidable restrictions for any detector component or material usually considered
 - Can build own pipeline for liquids
 - Own ventilation system to be built
- Large local production (and demand) of liquid argon
 - World's largest cold process unit of steel in Outokumpu's gigantic stainless steel factories in Northern Finland (Tornio).
 - Several (idependent/competing) factories of liquified gases (Ar, N) within 300 km distance (transport radius)
- Railway transport of heavy items to the site possible
- Environmental risks small
 - Laboratories separated from biosphere
 - Broken experiments can be closed and sealed

Costs for constructing a deep underground laboratory

- Large underground laboratory hall: typically 200 EUR/m³
 - Rock construction 40 %
 - excavation, rock removal, shotcreting, bolting, water shielding, etc
 - Building technical works (inner structures etc) 20 %
 - HVAC 5 %
 - Plans, permissions etc 15 %
 - Surprises 20 %
- Additional shielding (for neutrons) or special equipment
 - Extra costs not excessive
- Access construction:
 - Decline (tunnel, ramp) with heavy truck access: 3000 EUR/m
 - Narrow tunnel: 1000 EUR/m
 - Shaft (7 m) 5000 EUR/m, (2 m) 1000 EUR/m.
 - Own hoist (lift) to surface 2-10 MEUR

Cost summary

- Basic costs (general halls, HVAC, etc): ca 5-10 MEUR
- Access: 2-20 MEUR, depending on depth, location and capacity
- Caverns for experiments
 - LENA: 10 MEUR
 - Compare: an underground oil tank of 45 000 m³: 7 MEUR
 - Cavern for a 100 kton detector (e.g. Neutrino factory): 12 MEUR
 - Caverns for a Megaton detector (UNO-like): 200 MEUR
 - Several ca 30 m wide caverns one large sphere with r=70 m very expensive.
- Surface buildings
 - 1-5 MEUR, depending on needs

Depths and locations

- Level 1100 m (3000 m.w.e)
 - Most cost-effective solution
 - Excavated rock can be skipped directly to stopes for backfilling
 - Minimal disturbance to mining
 - Own lift/decline not required (but would be nice)
- Level 1400-1500 m (4000 m.w.e)
 - Need special arrangement if done during mining
 - Own access (lift) necessary
 - Additional cost 3-10 MEUR
 - Improves the usability of the lab
 - May need own decline from 1100 m level
 - Additional cost 5-10 MEUR
- Depths 1500-2500 m (4000-7000 m.w.e.)
 - Possible, but expensive, additional cost ca 30
 000 EUR/m.

Conclusions

- Pyhäsalmi site very suitable for long baseline neutrino oscillation studies
 - CERN Pyhäsalmi baseline 2300 km
 - JHF Pyhäsalmi baseline 7200 km
- Several neutrino sources technically possible
 - Neutrino factory 5-50 GeV
 - Wide band beam 1-6 GeV
 - Beta beam 4-8 GeV
- Large halls can be constructed deep underground
 - Good logistics
- Good opportunities for large detectors
 - Good transport options
 - Liquid argon nearby
- Environmentally robust and safe site

