Solving the degeneracy by a neutrino factory with polarized muon beam

Preliminary results ...

Toshihiko Ota
in collaboration with Osamu Yasuda*

Osaka University,
*Tokyo Metropolitan University

Contents

- Introduction
- Current status of oscillation parameters
- Eight-fold degeneracy
- schematic explanation following O. Yasuda hep-ph/0405005
- Degeneracy in the neutrino factory experiment with the golden channel $\nu_{e} \rightarrow \nu_{\mu}$.
- How to resolve the $\theta_{13}-\delta$ degeneracy only with the neutrino factory?
- Silver channel $\nu_{e} \rightarrow \nu_{\tau}$ etc...
- Using $\nu_{\mu} \rightarrow \nu_{e}$ channel with polarized muon beam
- Idea
- Numerical analysis with $\Delta \chi^{2}$
- Discussion and summary

Current status of oscillation parameters

- Current status of oscillation parameters (99\% CL):

$$
\begin{gathered}
7.2 \times 10^{-5}<\Delta m_{21}^{2}<8.9 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
1.7 \times 10^{-3}<\left|\Delta m_{31}^{2}\right|<3.3 \times 10^{-3}\left[\mathrm{eV}^{2}\right] \\
30^{\mathrm{o}}<\theta_{12}<38^{\mathrm{o}}, \quad 36^{\mathrm{o}}<\theta_{23}<54^{\mathrm{o}}, \quad \theta_{13}<10^{\mathrm{o}}, \\
\delta=? .
\end{gathered}
$$

- We want to know ... θ_{13} and δ.
-.. and the sign of Δm_{31}^{2} and $\theta_{23}<45^{\circ}$? or $>45^{\circ}$?.
- When we try to determine a parameter, it is important to know about the other parameters precisely because they are correlated with each other.

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters - Degeneracy.
- In other words, $P_{\nu_{e} \rightarrow \nu_{\mu}}=\hat{P}, P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}=\hat{\bar{P}}$ can be reproduced with more than one parameter set.

$$
\begin{aligned}
& \hat{P}=4.8 \times 10^{-5}, \\
& \hat{\bar{P}}=6.8 \times 10^{-5} \\
& \text { with } \begin{array}{l}
\sin ^{2} 2 \hat{\theta}_{13}=0.001, \\
\sin ^{2} \hat{\theta}_{23}=0.6, \hat{\delta}=-\pi / 2
\end{array}
\end{aligned}
$$

Fixed parameters:

$$
\begin{gathered}
\Delta m_{21}^{2}=8.1 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\Delta m_{31}^{2}=2.2 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\sin ^{2} 2 \theta_{12}=0.84, \\
L=3000[\mathrm{~km}], \quad E_{\nu}=30[\mathrm{GeV}] \\
\rho=3.32\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
\end{gathered}
$$

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters - Degeneracy.
- In other words, $P_{\nu_{e} \rightarrow \nu_{\mu}}=\hat{P}, P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}=\hat{\bar{P}}$ can be reproduced with more than one parameter set.

$$
\begin{aligned}
& \hat{P}=4.8 \times 10^{-5} \\
& \hat{\bar{P}}=6.8 \times 10^{-5}
\end{aligned} \quad \begin{aligned}
& \text { with } \begin{array}{l}
\sin ^{2} 2 \hat{\theta}_{13}=0.001, \\
\sin ^{2} \hat{\theta}_{23}=0.6, \hat{\delta}=-\pi / 2
\end{array}
\end{aligned}
$$

Fixed parameters:

$$
\begin{gathered}
\Delta m_{21}^{2}=8.1 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\Delta m_{31}^{2}=2.2 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\sin ^{2} 2 \theta_{12}=0.84, \\
L=3000[\mathrm{~km}], \quad E_{\nu}=30[\mathrm{GeV}] \\
\rho=3.32\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
\end{gathered}
$$

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters - Degeneracy.
- In other words, $P_{\nu_{e} \rightarrow \nu_{\mu}}=\hat{P}, P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}=\hat{\bar{P}}$ can be reproduced with more than one parameter set.

$$
\begin{aligned}
& \hat{P}=4.8 \times 10^{-5}, \\
& \hat{\bar{P}}=6.8 \times 10^{-5} \\
& \text { with } \begin{array}{l}
\begin{array}{l}
\sin ^{2} 2 \hat{\theta}_{13}=0.001, \\
\sin ^{2} \hat{\theta}_{23}=0.6, \hat{\delta}=-\pi / 2
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Fixed parameters:

$$
\begin{gathered}
\Delta m_{21}^{2}=8.1 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\Delta m_{31}^{2}=2.2 \times 10^{-5}\left[\mathrm{eV}^{2}\right] \\
\sin ^{2} 2 \theta_{12}=0.84, \\
L=3000[\mathrm{~km}], \quad E_{\nu}=30[\mathrm{GeV}] \\
\rho=3.32\left[\mathrm{~g} / \mathrm{cm}^{3}\right]
\end{gathered}
$$

Forthcoming reactor experiment

- Forthcoming reactor experiments can solve this degeneracy.
- They only sensitive to θ_{13}.
- The next generation reactor experiments reach $\sin ^{2} 2 \theta_{13} \gtrsim \mathcal{O}(0.01)$.
- If $\sin ^{2} 2 \theta_{13} \gtrsim \mathcal{O}(0.01)$, the degeneracy can be resolved.

- If $\sin ^{2} 2 \theta_{13} \lesssim \mathcal{O}\left(10^{-3}\right) \ldots$ how to resolve the degeneracy?

Next generation experiment

- How to resolve this degeneracy?
- Synergy, i.e., Golden channel $+\alpha$

Next generation experiment

- How to resolve this degeneracy?
- Synergy, i.e., Golden channel $+\alpha$
- One neutrino factory $+\alpha$,
- $\nu_{e} \rightarrow \nu_{\mu}$ but with different energy region - β-beam etc...
- $\nu_{e} \rightarrow \nu_{\mu}$ but with the other baseline and the other detector

Next generation experiment

- How to resolve this degeneracy?
- Synergy, i.e., Golden channel $+\alpha$
- One neutrino factory $+\alpha$,
- $\nu_{e} \rightarrow \nu_{\mu}$ but with different energy region
- β-beam etc...
- $\nu_{e} \rightarrow \nu_{\mu}$ but with the other baseline and the other detector
- Within one neutrino factory
- Silver channel $\nu_{e} \rightarrow \nu_{\tau}$
- the same baseline but with the different detector

Next generation experiment

- How to resolve this degeneracy?
- Synergy, i.e., Golden channel $+\alpha$
- One neutrino factory $+\alpha$,
- $\nu_{e} \rightarrow \nu_{\mu}$ but with different energy region
- β-beam etc...
- $\nu_{e} \rightarrow \nu_{\mu}$ but with the other baseline and the other detector
- Within one neutrino factory
- Silver channel $\nu_{e} \rightarrow \nu_{\tau}$
- the same baseline but with the different detector
- $\nu_{\mu} \rightarrow \nu_{e}$ with polarized muon beam 11 the same baseline, the same detector, but the different accelerator setting

Idea to resolve the degeneracy using $\nu_{\mu} \rightarrow \nu_{e}$ channel

- Why $\nu_{\mu} \rightarrow \nu_{e}$?
- Why polarized beam?

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ solve the degeneracy

- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ provides the straight line in the $\left(\sin ^{2} 2 \theta_{13}, 1 / \sin ^{2} \theta_{23}\right)$ plane.

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ solve the degeneracy

- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ provides the straight line in the $\left(\sin ^{2} 2 \theta_{13}, 1 / \sin ^{2} \theta_{23}\right)$ plane.

On the black and blue curves,

$$
\begin{aligned}
& P_{\nu_{e} \rightarrow \nu_{\mu}}=\hat{P} \\
& P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}=\hat{\bar{P}}
\end{aligned}
$$

are satisfied.

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ solve the degeneracy

- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ provides the straight line in the $\left(\sin ^{2} 2 \theta_{13}, 1 / \sin ^{2} \theta_{23}\right)$ plane.

On the black and blue curves,

$$
\begin{aligned}
& P_{\nu_{e} \rightarrow \nu_{\mu}}=\hat{P} \\
& P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}=\hat{\bar{P}}
\end{aligned}
$$

are satisfied.

- Note that the silver channel $P\left(\nu_{e} \rightarrow \nu_{\tau}\right)=$ const provides the curve, and it can also determine the true solution.

Idea: Why polarized muon beam

- Neutrino flux from μ^{-}with polarisation \mathcal{P}_{μ}

$$
\begin{aligned}
\mu^{-} \rightarrow \nu_{\mu} & \rightarrow \nu_{e} \\
\bar{\nu}_{e} & \rightarrow e^{-} \quad \text { (oscillation event) } \\
\text { charge } & \rightarrow e^{+} \text {(background) necessary }
\end{aligned}
$$

- The beam with $\mathcal{P}_{\mu}=-1$ only contains ν_{μ}.
- At the detector, the charge identification is not necessary to observe $\nu_{\mu} \rightarrow \nu_{e}$ events.
- Just count the e-like events.
- The background ratio should be quite low.
- Only mis-ID of $\nu_{\mu} \rightarrow \nu_{\mu}$.

Idea: Why polarized muon beam

- Neutrino flux from μ^{-}with polarisation \mathcal{P}_{μ}

$$
\begin{aligned}
& \mu^{-} \rightarrow \nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-} \quad(\text { oscillation event }) \\
& \bar{\nu}_{e} \rightarrow \bar{\nu}_{e} \rightarrow e^{+} \quad(\text { background }) \\
& \text { only osc. event }
\end{aligned}
$$

- The beam with $\mathcal{P}_{\mu}=-1$ only contains ν_{μ}.
- At the detector, the charge identification is not necessary to observe $\nu_{\mu} \rightarrow \nu_{e}$ events.
- Just count the e-like events.
- The background ratio should be quite low.
- Only mis-ID of $\nu_{\mu} \rightarrow \nu_{\mu}$.

Parameter fit with $\Delta \chi^{2}$

- $\Delta \chi^{2}$ for the golden channel $\left(\nu_{e} \rightarrow \nu_{\mu}\right)$
- $\Delta \chi^{2}$ for the $\nu_{\mu} \rightarrow \nu_{e}$ channel

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\begin{aligned}
\Delta \chi^{2} & \equiv \sum_{j}^{\text {channel }} \Delta \chi_{j}^{2} \sim \Delta \chi_{\nu_{e} \rightarrow \nu_{\mu}}^{2} \\
\Delta \chi_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{2} & \equiv \sum_{i}^{E_{\mathrm{bin}}} \frac{\left|N_{i}\left(\hat{\theta}_{13}, \hat{\delta}\right)-N_{i}\left(\theta_{13}, \delta\right)\right|^{2}}{\sigma_{i}^{2}} \\
& \propto \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}-P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right|^{2}
\end{aligned}
$$

- $\quad N_{i}$: event number of i-th bin
- $\sigma_{i}:$ standard deviation
$\bigcirc \sin ^{2} 2 \hat{\theta}_{13}=0.001, \hat{\delta}=\pi / 2$ are taken as the true value.

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\begin{aligned}
\Delta \chi^{2} & \equiv \sum_{j}^{\text {channel }} \Delta \chi_{j}^{2} \sim \Delta \chi_{\nu_{e} \rightarrow \nu_{\mu}}^{2} \\
\Delta \chi_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{2} & \equiv \sum_{i}^{E_{\mathrm{bin}}} \frac{\left|N_{i}\left(\hat{\theta}_{13}, \hat{\delta}\right)-N_{i}\left(\theta_{13}, \delta\right)\right|^{2}}{\sigma_{i}^{2}} \\
& \propto \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}-P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right|^{2}
\end{aligned}
$$

- $\quad N_{i}$: event number of i-th bin
- $\sigma_{i}:$ standard deviation
- $\sin ^{2} 2 \hat{\theta}_{13}=0.001, \hat{\delta}=\pi / 2$ are taken as the true value.

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\begin{aligned}
\Delta \chi^{2} & \equiv \sum_{j}^{\text {channel }} \Delta \chi_{j}^{2} \sim \Delta \chi_{\nu_{e} \rightarrow \nu_{\mu}}^{2} \\
\Delta \chi_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{2} & \equiv \sum_{i}^{E_{\mathrm{bin}}} \frac{\left|N_{i}\left(\hat{\theta}_{13}, \hat{\delta}\right)-N_{i}\left(\theta_{13}, \delta\right)\right|^{2}}{\sigma_{i}^{2}} \\
& \propto \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\alpha} \rightarrow \nu_{\beta}}-P_{\nu_{\alpha} \rightarrow \nu_{\beta}}\right|^{2}
\end{aligned}
$$

- $\quad N_{i}$: event number of i-th bin
- $\sigma_{i}:$ standard deviation
$\bigcirc \sin ^{2} 2 \hat{\theta}_{13}=0.001, \hat{\delta}=\pi / 2$ are taken as the true value.

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\Delta \chi^{2}=\Delta \chi_{\mathrm{un} \text {-pol }}^{2}+\Delta \chi_{\mathrm{pol}}^{2} \sim \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\nu_{e} \rightarrow \nu_{\mu}}\right|^{2}+\sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\mu} \rightarrow \nu_{e}}-P_{\nu_{\mu} \rightarrow \nu_{e}}\right|^{2}
$$

- $\nu_{\mu} \rightarrow \nu_{e}$ channel is not efficient because ...
- the trajectories are similar to those of $\nu_{e} \rightarrow \nu_{\mu}$.
- this is not efficient in the statistical sense.
- ν_{e} detection efficiency etc...

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\Delta \chi^{2}=\Delta \chi_{\text {un-pol }}^{2}+\Delta \chi_{\mathrm{pol}}^{2} \sim \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\nu_{e} \rightarrow \nu_{\mu}}\right|^{2}+\sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\mu} \rightarrow \nu_{e}}-P_{\nu_{\mu} \rightarrow \nu_{e}}\right|^{2}
$$

- $\nu_{\mu} \rightarrow \nu_{e}$ channel is not efficient because ...
- the trajectories are similar to those of $\nu_{e} \rightarrow \nu_{\mu}$.
- this is not efficient in the statistical sense.
- ν_{e} detection efficiency etc..

Parameter fit with $\Delta \chi^{2}$ on the $\theta_{13}-\delta$ plane

$$
\Delta \chi^{2}=\Delta \chi_{\mathrm{un}-\mathrm{pol}}^{2}+\Delta \chi_{\mathrm{pol}}^{2} \sim \sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\nu_{e} \rightarrow \nu_{\mu}}\right|^{2}+\sum_{i}^{E_{\mathrm{bin}}}\left|\hat{P}_{\nu_{\mu} \rightarrow \nu_{e}}-P_{\nu_{\mu} \rightarrow \nu_{e}}\right|^{2}
$$

- $\nu_{\mu} \rightarrow \nu_{e}$ channel is not efficient because ...
the trajectories are similar to those of $\nu_{e} \rightarrow \nu_{\mu}$.
- this is not efficient in the statistical sense.
- ν_{e} detection efficiency etc.

Reason why: $\Delta \chi^{2}$ and $\left(P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}\right)$

- $\Delta \chi^{2}$ function can be approximately understood by

$$
\Delta \chi^{2}=\Delta \chi_{\mathrm{un-pol}}^{2}+\Delta \chi_{\mathrm{pol}}^{2}
$$

$$
\Delta \chi_{\mathrm{un}-\mathrm{pol}}^{2} \sim\left|\hat{P}_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\nu_{e} \rightarrow \nu_{\mu}}\right|^{2}, \quad \Delta \chi_{\mathrm{pol}}^{2} \sim\left|\hat{P}_{\nu_{\mu} \rightarrow \nu_{e}}-P_{\nu_{\mu} \rightarrow \nu_{e}}\right|^{2}
$$

- In the plot, we use the information of $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ to resolve the degeneracy ... This is quite different information from $\Delta \chi_{\text {pol }}^{2}$.
- If we try to introduce this information, then we should construct the statistics like

$$
\Delta \chi_{\mathrm{CPT}}^{2} \propto\left|\left(\hat{P}_{\nu_{e} \rightarrow \nu_{\mu}}-\hat{P}_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}\right)-\left(P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}\right)\right|^{2} .
$$

Trajectory plot analysis

- Trajectories of $P=\hat{P}$
- $P_{\nu_{e} \rightarrow \nu_{\mu}}$ golden channel
- $P_{\nu_{\mu} \rightarrow \nu_{e}}$

Trajectory plot analysis

- Trajectories of $P=\hat{P}$
- $P_{\nu_{e} \rightarrow \nu_{\mu}}$ golden channel
- $P_{\nu_{\mu} \rightarrow \nu_{e}}$
- Trajectories of $P-P^{\prime}=\hat{P}-\hat{P}^{\prime}$
- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ CPT violation
- Information of CPT violation (matter effect) may help to solve the degeneracy

$$
\Delta \chi^{2} \equiv \Delta \chi_{\mathrm{golden}}^{2}+\Delta \chi_{\mathrm{CPT}}^{2}
$$

$$
\begin{aligned}
\Delta \chi_{\mathrm{CPT}}^{2} \equiv & \sum_{i}^{E_{\mathrm{bin}}} \frac{\left|\left(\hat{N}_{i}^{\nu_{e} \rightarrow \nu_{\mu}}-C_{i} \hat{N}_{i}^{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}\right)-\left(N_{i}^{\nu_{e} \rightarrow \nu_{\mu}}-C_{i} N_{i}^{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}\right)\right|^{2}}{\sigma_{i}^{2}} \\
& C_{i} \equiv \Phi_{i}^{\bar{\nu}_{\mu}} / \Phi_{i}^{\nu_{e}}: \text { flux normalization factor. }
\end{aligned}
$$

Trajectory plot analysis

- Trajectories of $P=\hat{P}$
- $P_{\nu_{e} \rightarrow \nu_{\mu}}$ golden channel
- $P_{\nu_{\mu} \rightarrow \nu_{e}}$
- Trajectories of $P-P^{\prime}=\hat{P}-\hat{P}^{\prime}$
- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$ CPT violation
- $P_{\nu_{e} \rightarrow \nu_{\mu}}-P_{\nu_{\mu} \rightarrow \nu_{e}} \mathrm{~T}$ violation
- Trajectories of T violation do not depend on E_{ν}.
- Therefore, this is not so efficient in the sense of the parameter fitting.
- However, this feature is advantageous in the statistical sense.
- This quantity tells us whether T is violated or not -
- We propose using the information of $\nu_{\mu} \rightarrow \nu_{e}$.
- To use $\nu_{\mu} \rightarrow \nu_{e}$, we assume the neutrino factory with the polarized muon beam.
- This information is not so effective to resolve the degeneracy with the usual $\Delta \chi^{2}$ analysis.
- It may be useful to improve the way to construct the statistics, depending on what we want $-\Delta \chi_{\mathrm{CPT}, \mathrm{T}}^{2}$.
- The numerical calculation is necessary to check whether $\Delta \chi_{\mathrm{CPT}}^{2}$ is effective in the statistical sense.
- We can directly (=not parameter fitting sense) obtain the T-violation effect by using $\Delta \chi_{T}^{2}$
-therefore, this channel must be important...

Note about T violation effect

Note about T violation effect

Note about T violation effect

- If reactor experiments exclude the $\sin ^{2} 2 \theta_{13} \lesssim 0.01, \delta=0$ and π can be excluded - T violation is established. goodness of fit between true and $\delta=\{0, \pi\}$.

