Solving the degeneracy by a neutrino factory with polarized muon beam

Preliminary results ...

Toshihiko Ota in collaboration with Osamu Yasuda*

Osaka University,

*Tokyo Metropolitan University

Contents

Introduction

- Current status of oscillation parameters
- Eight-fold degeneracy

— schematic explanation following O. Yasuda hep-ph/0405005

- Degeneracy in the neutrino factory experiment with the golden channel $\nu_e \rightarrow \nu_\mu$.
 - How to resolve the θ_{13} - δ degeneracy only with the neutrino factory?
 - Silver channel $\nu_e \rightarrow \nu_\tau$ etc...
 - Using $\nu_{\mu} \rightarrow \nu_{e}$ channel with polarized muon beam
 - 🗩 Idea
 - Numerical analysis with $\Delta \chi^2$
- Discussion and summary

Introduction

Degeneracy in the oscillation parameters

Current status of oscillation parameters

• Current status of oscillation parameters (99% CL): $7.2 \times 10^{-5} < \Delta m_{21}^2 < 8.9 \times 10^{-5} [eV^2],$ $1.7 \times 10^{-3} < |\Delta m_{31}^2| < 3.3 \times 10^{-3} [eV^2],$ $30^{\circ} < \theta_{12} < 38^{\circ}, \quad 36^{\circ} < \theta_{23} < 54^{\circ}, \quad \theta_{13} < 10^{\circ},$ $\delta = ?.$

- We want to know ... θ_{13} and δ .
- ... and the sign of Δm_{31}^2 and $\theta_{23} < 45^{\circ}$? or > 45°?.
- When we try to determine a parameter, it is important to know about the other parameters precisely because they are correlated with each other.

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters — Degeneracy.
- In other words, $P_{\nu_e \to \nu_\mu} = \hat{P}, P_{\bar{\nu}_e \to \bar{\nu}_\mu} = \hat{\bar{P}}$ can be reproduced with more than one parameter set.

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters Degeneracy.
- In other words, $P_{\nu_e \to \nu_\mu} = \hat{P}$, $P_{\bar{\nu}_e \to \bar{\nu}_\mu} = \hat{\bar{P}}$ can be reproduced with more than one parameter set.

Solving the degeneracy by a neutrino factory with polarized muon beam -p. 5

Eight-fold degeneracy

- Even if we can measure the oscillation probabilities with high precision, there is the remaining uncertainty for determination of the oscillation parameters Degeneracy.
- In other words, $P_{\nu_e \to \nu_\mu} = \hat{P}$, $P_{\bar{\nu}_e \to \bar{\nu}_\mu} = \hat{\bar{P}}$ can be reproduced with more than one parameter set.

Forthcoming reactor experiment

- Forthcoming reactor experiments can solve this degeneracy.
- They only sensitive to θ_{13} .
- The next generation 2.5 reactor experiments reach $1/\sin^2 \theta_{23}$ $\sin^2 2\theta_{13} \gtrsim \mathcal{O}(0.01).$ 2 rue • If $\sin^2 2\theta_{13} \gtrsim \mathcal{O}(0.01)$, 1.5 the degeneracy can be re-0.002 0.006 0.008 0.01 solved. 0.004 0 $\sin^2 2\theta_{13}$

• If $\sin^2 2\theta_{13} \leq \mathcal{O}(10^{-3})$... how to resolve the degeneracy?

SAKA UNIVERSITY

Next generation experiment

How to resolve this degeneracy?
 — Synergy, i.e., Golden channel $+\alpha$

SAKA UNIVERSITY

Next generation experiment

- How to resolve this degeneracy?
 - Synergy, i.e., Golden channel $+\alpha$
 - One neutrino factory $+\alpha$,
 - $\nu_e \rightarrow \nu_\mu$ but with different energy region — β -beam etc...
 - $\nu_e \rightarrow \nu_\mu$ but with the other baseline and the other detector

Next generation experiment

- How to resolve this degeneracy?
 - Synergy, i.e., Golden channel $+\alpha$
 - One neutrino factory $+\alpha$,
 - $\nu_e \rightarrow \nu_\mu$ but with different energy region — β -beam etc...
 - $\nu_e \rightarrow \nu_\mu$ but with the other baseline and the other detector
 - Within one neutrino factory
 - Silver channel $\nu_e \to \nu_\tau$
 - the same baseline but with the different detector

Next generation experiment

- How to resolve this degeneracy?
 - Synergy, i.e., Golden channel $+\alpha$
 - One neutrino factory $+\alpha$,
 - $\nu_e \rightarrow \nu_\mu$ but with different energy region $-\beta$ -beam etc...
 - $\nu_e \rightarrow \nu_\mu$ but with the other baseline and the other detector
 - Within one neutrino factory
 - Silver channel $\nu_e \rightarrow \nu_{\tau}$
 - the same baseline but with the different detector

In this talk the same baseline, the same detector, but the different accelerator setting

Idea to resolve the degeneracy using $\nu_{\mu} \rightarrow \nu_{e}$ channel

• Why
$$\nu_{\mu} \rightarrow \nu_{e}$$
?

My polarized beam?

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ **solve the degeneracy**

• $P_{\nu_e \to \nu_\mu} - P_{\bar{\nu}_\mu \to \bar{\nu}_e}$ provides the straight line in the $(\sin^2 2\theta_{13}, 1/\sin^2 \theta_{23})$ plane.

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ **solve the degeneracy**

Idea: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ **solve the degeneracy**

• Note that the silver channel $P(\nu_e \rightarrow \nu_{\tau}) = \text{const provides}$ the curve, and it can also determine the true solution.

Idea: Why polarized muon beam

▶ Neutrino flux from μ^- with polarisation \mathcal{P}_{μ}

$$\mu^- \rightarrow \nu_\mu \rightarrow \nu_e \rightarrow e^-$$
 (oscillation event)
 $\bar{\nu}_e \rightarrow \bar{\nu}_e \rightarrow e^+$ (background)
charge ID necessary

- The beam with $\mathcal{P}_{\mu} = -1$ only contains ν_{μ} .
 - At the detector, the charge identification is not necessary to observe $\nu_{\mu} \rightarrow \nu_{e}$ events.
 - Just count the *e-like* events.
 - The background ratio should be quite low.
 - Only mis-ID of $\nu_{\mu} \rightarrow \nu_{\mu}$.

Idea: Why polarized muon beam

• Neutrino flux from μ^- with polarisation \mathcal{P}_{μ}

 $\mu^- \rightarrow \nu_{\mu} \rightarrow \nu_{e} \rightarrow e^-$ (oscillation event) $\bar{\nu}_e \rightarrow \bar{\nu}_e \rightarrow e^+$ (background) only osc. event

- The beam with $\mathcal{P}_{\mu} = -1$ only contains ν_{μ} .
 - At the detector, the charge identification is not necessary to observe $\nu_{\mu} \rightarrow \nu_{e}$ events.
 - Just count the *e-like* events.
 - The background ratio should be quite low.
 - Only mis-ID of $\nu_{\mu} \rightarrow \nu_{\mu}$.

Parameter fit with $\Delta \chi^2$

- $\Delta \chi^2$ for the golden channel $(\nu_e \to \nu_\mu)$
- $\Delta \chi^2$ for the $\nu_{\mu} \rightarrow \nu_e$ channel

Solving the degeneracy by a neutrino factory with polarized muon beam - p. 12

Solving the degeneracy by a neutrino factory with polarized muon beam – p. 12

Parameter fit with $\Delta \chi^2$ on the $heta_{13}$ - δ plane \diamond Osaka university

- the trajectories are similar to those of $\nu_e \rightarrow \nu_{\mu}$.
- this is not efficient in the statistical sense.
 - ν_e detection efficiency etc...

- $\nu_{\mu} \rightarrow \nu_{e}$ channel is not efficient because ...
 - the trajectories are similar to those of $\nu_e \to \nu_\mu$.
 - this is not efficient in the statistical sense.
 - ν_e detection efficiency etc...

Reason why: $\Delta \chi^2$ and $(P_{\nu_e \to \nu_\mu} - P_{\bar{\nu}_e \to \bar{\nu}_\mu})$

• $\Delta \chi^2$ function can be approximately understood by

$$\Delta \chi^2 = \Delta \chi^2_{\text{un-pol}} + \Delta \chi^2_{\text{pol}},$$
$$\Delta \chi^2_{\text{un-pol}} \sim |\hat{P}_{\nu_e \to \nu_\mu} - P_{\nu_e \to \nu_\mu}|^2, \quad \Delta \chi^2_{\text{pol}} \sim |\hat{P}_{\nu_\mu \to \nu_e} - P_{\nu_\mu \to \nu_e}|^2$$

In the plot, we use the information of P_{νe→νμ} - P_{νμ→νe} to resolve the degeneracy ... This is quite different information from Δχ²_{pol}.

OSAKA UNIVERSITY

 If we try to introduce this information, then we should construct the statistics like

$$\Delta \chi^2_{\rm CPT} \propto |(\hat{P}_{\nu_e \to \nu_\mu} - \hat{P}_{\bar{\nu}_\mu \to \bar{\nu}_e}) - (P_{\nu_e \to \nu_\mu} - P_{\bar{\nu}_\mu \to \bar{\nu}_e})|^2$$

Trajectory plot analysis

- Trajectories of $P = \hat{P}$
 - $P_{\nu_e \to \nu_{\mu}}$ golden channel
- $P_{\nu_{\mu} \rightarrow \nu_{e}}$

Trajectory plot analysis

- Trajectories of $P = \hat{P}$
 - $P_{\nu_e \to \nu_{\mu}}$ golden channel
 - $P_{\nu_{\mu} \rightarrow \nu_{e}}$
 - Trajectories of $P P' = \hat{P} \hat{P}'$
 - $P_{\nu_e \to \nu_{\mu}} P_{\bar{\nu}_{\mu} \to \bar{\nu}_e}$ CPT violation

OSAKA UNIVERSITY

 Information of CPT violation (matter effect) may help to solve the degeneracy

$$\Delta \chi^2 \equiv \Delta \chi^2_{\rm golden} + \Delta \chi^2_{\rm CPT},$$

$$\Delta \chi^2_{\rm CPT} \equiv \sum_{i}^{E_{\rm bin}} \frac{|(\hat{N}_i^{\nu_e \to \nu_\mu} - C_i \hat{N}_i^{\bar{\nu}_\mu \to \bar{\nu}_e}) - (N_i^{\nu_e \to \nu_\mu} - C_i N_i^{\bar{\nu}_\mu \to \bar{\nu}_e})|^2}{\sigma_i^2},$$
$$C_i \equiv \Phi_i^{\bar{\nu}_\mu} / \Phi_i^{\nu_e} : \text{flux normalization factor.}$$

Trajectory plot analysis

- Trajectories of $P = \hat{P}$
 - $P_{\nu_e \to \nu_{\mu}}$ golden channel
 - $P_{\nu_{\mu} \to \nu_{e}}$
 - Trajectories of $P P' = \hat{P} \hat{P}'$ • $P_{\nu_e \to \nu_\mu} - P_{\bar{\nu}_\mu \to \bar{\nu}_e}$ CPT violation

- $P_{\nu_e \to \nu_\mu} P_{\nu_\mu \to \nu_e}$ T violation
- Trajectories of T violation do not depend on E_{ν} .
 - Therefore, this is not so efficient in the sense of the parameter fitting.
 - However, this feature is advantageous in the statistical sense.
- This quantity tells us whether T is violated or not —

Summary

- We propose using the information of $\nu_{\mu} \rightarrow \nu_{e}$.
- To use $\nu_{\mu} \rightarrow \nu_{e}$, we assume the neutrino factory with the polarized muon beam.
- This information is not so effective to resolve the degeneracy with the usual $\Delta \chi^2$ analysis.
- It may be useful to improve the way to construct the statistics, depending on what we want $\Delta \chi^2_{\rm CPT,T}$.
 The numerical calculation is necessary to check whether

 $\Delta \chi^2_{\rm CPT}$ is effective in the statistical sense.

• We can directly (=not parameter fitting sense) obtain the T-violation effect by using $\Delta \chi_{\rm T}^2$ —therefore, this channel must be important...

Summary

Solving the degeneracy by a neutrino factory with polarized muon beam - p. 17

Note about T violation effect

$$P_{\nu_e \to \nu_\mu} - P_{\nu_\mu \to \nu_e}$$

$$\left(\hat{J}_{\rm CP} - J_{\rm CP}\right) f(E_{\nu}) \propto \left(\sin 2\hat{\theta}_{13} \sin \hat{\delta} - \sin 2\theta_{13} \sin \delta\right)$$

• Energy dependence is factored out

 Energy binning cannot help to solve the degeneracy — but advantageous in the statistical sense to extract T-violation effect

This information cannot determine the parameter but tell us whether T is violated or not.

Note about T violation effect

$$P_{\nu_e \to \nu_{\mu}} - P_{\nu_{\mu} \to \nu_{e}}$$

$$\left(\hat{J}_{\rm CP} - J_{\rm CP}\right) f(E_{\nu}) \propto \left(\sin 2\hat{\theta}_{13} \sin \hat{\delta} - \sin 2\theta_{13} \sin \delta\right)$$

• Energy dependence is factored out

 Energy binning cannot help to solve the degeneracy — but advantageous in the statistical sense to extract T-violation effect

This information cannot determine the parameter but tell us whether T is violated or not.

SAKA UNIVERSITY

Note about T violation effect

$$\left(\hat{J}_{\rm CP} - J_{\rm CP}\right) f(E_{\nu}) \propto \left(\sin 2\hat{\theta}_{13} \sin \hat{\delta} - \sin 2\theta_{13} \sin \delta\right)$$

• Energy dependence is factored out

 Energy binning cannot help to solve the degeneracy — but advantageous in the statistical sense to extract T-violation effect

This information cannot determine the parameter but tell us whether T is violated or not.

• If reactor experiments exclude the $\sin^2 2\theta_{13} \leq 0.01$, $\delta = 0$ and π can be excluded — T violation is established. goodness of fit between *true* and $\delta = \{0, \pi\}$.