

Andrea Donini

Departamento de Física Teórica and IFT

Universidad Autónoma de Madrid

In collaboration with E. Fernández-Martínez and S. Rigolin

- Introduction
 - Oscillation parameters
 - Experiments description
- SPL vs T2K-I
- Subleading effects in v_{μ} disappearance
 - Δm^2_{atm} and the sign degeneracy
 - θ_{23} and the octant degeneracy
 - The effects of θ_{13} and δ
- T2K-I bounds revised
- The Neutrino Factory
- Conclusions

- What we already know (at 3σ)
 - Solar sector $\begin{cases} \Delta m_{12}^2 = 8.2_{-0.9}^{+1.1} \cdot 10^{-5} \text{eV}^2 \\ \tan^2 \theta_{12} = 0.39_{-0.11}^{+0.21} & \theta_{12} = 28^\circ 38^\circ \\ \end{cases}$ Atm sector $\begin{cases} \left| \Delta m_{23}^2 \right| = 2.2_{-0.6}^{+1.4} \cdot 10^{-3} \text{eV}^2 \\ \tan^2 \theta_{23} = 1_{-0.5}^{+1.1} & \theta_{23} = 35^\circ 55^\circ \end{cases}$
- What we still do not know
 - $\sin^2 2\theta_{13} < 0.16$ • δ_{cp} • Mass hierarchy $s_{atm} = sign(\Delta m_{23}^2)$

• Octant of
$$\theta_{23}$$
 $s_{oct} = sign[tan(2\theta_{23})]$

M. C. González García hep-ph/0410030

$$V_{\mu}$$
 flux from π^+ decay at $\langle E_{\nu} \rangle = 0.75 GeV$

T2K fluxes courtesy of J.J. Gómez Cadenas

Old SPL fluxes courtesy of Gilardoni

 ν_{μ}

1

0.8

$$V_{\mu}$$
 flux from π^+ decay at $\langle E_{\nu} \rangle = 0.75 GeV$

T2K fluxes courtesy of J.J. Gómez Cadenas

New fluxes Campagne et al. hep-ex/0411062

 ν_{μ}

 $\bar{\mathbf{v}}_{\mu}$

0.8

1

T2K-I	B1	B2	B3	B4
No osc. N_{μ}	753	2228	2273	757
Signal N_{μ}	46	101	381	239

SPL	μ¯	μ^+
No osc. N_{μ}	24245	25467
Signal N_{μ}	1746	1614

4 energy bins of 200MeV Between 0.4 – 1.2GeV

L=295Km

L=130Km

Statistics dominated

Systematic dominated

5yr v_{μ} exposure with a 22.5Kt water cerenkov detector for T2K-I 2yr v_{μ} + 8yr \overline{v}_{μ} exposure with a 440Kt water cerenkov detector for the SPL

T2K-I

SPL

5% systematic error and backgrounds taken into account

T2K-I

SPL

E4 = 1.0 - 1.2 GeV

T2K-I

SPL-new

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23} - s_{23}^{2} \sin^{2} 2\theta_{13} \cos^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right) \left[s_{12}^{2} \sin^{2} 2\theta_{23} + \tilde{J}s_{23}^{2} \cos \delta\right] \sin\left(\Delta_{atm}L\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right)^{2} \left[c_{23}^{4} \sin^{2} 2\theta_{12} + s_{12}^{2} \sin^{2} 2\theta_{23} \cos\left(\Delta_{atm}L\right)\right]$$

Where

$$\widetilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$
$$\sin 2\theta_{13} < 0.4 \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \left(\frac{\Delta_{sol} L}{2}\right) \cong 0.05$$

E. K. Akhmedov *et al.* hep-ph/0402175 A. Donini *et al.* hep-ph/0411402

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right) + O\left(\frac{\Delta_{sol}L}{2}\right) + O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right) [s_{12}^{2} \sin^{2} 2\theta_{23}] \sin(\Delta_{atm}L)$$
$$+ O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

Fit assuming inverted hierarchy

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right) [s_{12}^{2} \sin^{2} 2\theta_{23}] \sin(\Delta_{atm}L)$$
$$+ O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right) \\ - \left(\frac{\Delta_{sol}L}{2}\right) [s_{12}^{2} \sin^{2} 2\theta_{23}] \sin(\Delta_{atm}L) \\ + O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right) \\ - \left(\frac{\Delta_{sol}L}{2}\right) [s_{12}^{2} \sin^{2} 2\theta_{23}] \sin(\Delta_{atm}L) \\ + O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (\sin^{2} 2\theta_{23}) \sin^{2}\left(\frac{\Delta_{atm}L}{2}\right)$$
$$-\left(\frac{\Delta_{sol}L}{2}\right) [s_{12}^{2} \sin^{2} 2\theta_{23}] \sin(\Delta_{atm}L)$$
$$+ O\left(\frac{\Delta_{sol}L}{2}\right)^{2}$$

 $\sin^2 2\theta > 0.97 \tan^2 \theta = 0.73 - 1.39$

 $\Delta m^2 = (-2.63 - -2.49) \cdot 10^{-3} \, eV^2$

 $\tan^2\theta = 0.62 - 0.85, 1.21 - 1.66$ $\Delta m^2 = (-2.64 - -2.47) \cdot 10^{-3} \text{ eV}^2$

 $5yr \nu_{\mu} + 5yr \overline{\nu}_{\mu}$ exposure with a 40Kt iron calorimeter for the NF

- Possible Setups:
 - L = 3000Km E = 20, 50 GeV
 - L = 7000Km E = 50 GeV
- 5 GeV bins considered
- Efficiency:
 - $\varepsilon_{\mu} = 0.5$ for neutrinos

- "Cervera et al. hep-ph/0002108"
- $\varepsilon_{\mu} = 0.33$ for antineutrinos
- Systematics = 2%

See e.g. Bueno et al. hep-ph/0005007 for an Icarus analysis

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 6^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 6^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 4^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 3^{\circ}$, $\delta = 0^{\circ}$

Input: $\theta_{23} = 40^{\circ}$, $\theta_{13} = 2^{\circ}$, $\delta = 0^{\circ}$

• The measurement of θ_{13} and δ will rely heavily on an improvement of the measure of θ_{23} and Δm_{23}^2

See Meloni's talk

- Precision measurements of θ_{23} and Δm_{23}^2 need energy resolution and events above and below the oscillation peak
- SPL is clearly inadequate for the task. T2K-I is very good due to energy resolution and it can exclude maximal mixing for $\theta_{23} < 41^{\circ}$
- The NuFactory seems extremely promising but more study is needed (a very long baseline?)
- v_{μ} disappearance can be combined with the appearance channel to solve degeneracies

NF 50GeV	B1	B2	B3	B4	New SPL	μ^{-}	μ^+
No osc. N_{μ}	1137	15390	60590	147987	No osc. N_{μ}	79365	95511
Signal μ^-	266	1297	16150	54128	Signal N_{μ}	8811	11347
Signal μ^+	153	751	9032	28635			

4 energy bins of 5GeV Between 0 – 20GeV

L=3000Km

L=130Km

Systematic dominated

Systematic dominated

5yr v_{μ} + 5yr \overline{v}_{μ} exposure with a 40Kt iron calorimeter for the NF 2yr v_{μ} + 8yr \overline{v}_{μ} exposure with a 440Kt water cerenkov detector for the SPL

NF 20GeV	B1	B2	B3	B4
No osc. N_{μ}	2598	31286	103756	196373
Signal μ^-	614	2574	27399	71472
Signal μ^+	337	1257	10415	11557

NF 50GeV 7000km	B1	B2	B3	B4
No osc. N_{μ}	209	2827	11129	27281
Signal μ^-	37	980	380	1328
Signal μ^+	21	569	215	697

5yr v_{μ} + 5yr \overline{v}_{μ} exposure with a 40Kt iron calorimeter for the NF

5% systematic error

2% systematic error

Errors dominated by statistics

Errors dominated by statistics

Red histogram for true QE events

Figure taken from Y. Itow *et al.* hep-ex/0106019

4 bins of 200MeV

8 bins of 100MeV

