Contents

F. Méot DAPNIA & IN2P3

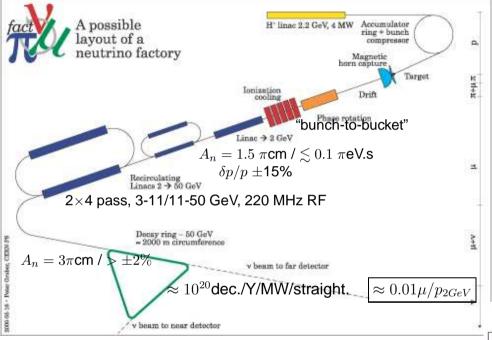
2

3

6

9

Muon acceleration, FFAG studies. Present status


U	ontents
1	Pre-FFAG era : RLA based designs
2	Japan NuFact. Scaling FFAG R&D
3	Non-scaling FFAGs, linear optics
4	Isochronous lattice, non-linear optics

5 Conclusion : an e-model of a muon non-scaling FFAG is needed 10

1 Pre-FFAG era : RLA based designs

Principle : high freq./high gradient RF \rightarrow fast acceleration (+ large phys. aperture) \rightarrow high μ transmission

• Europe NuFact [rep. March 2003]

Amongst conclusions to these design studies :

- difficult projects, yet no fundamental obstacle
 plans for extensive R&D, prototyping, tests
- . very high cost
- -> US SII report, introduction to Chapt.6 (Acceleration) :

"FFAG rings could be also considered"

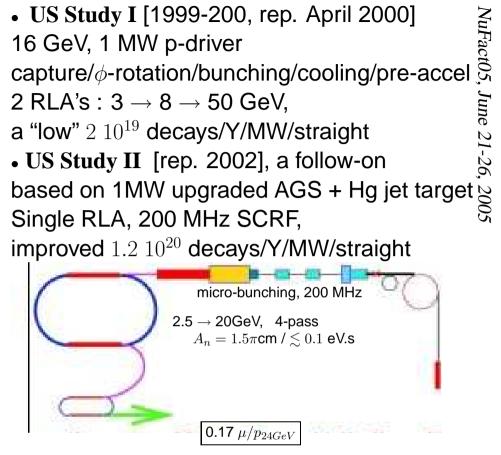
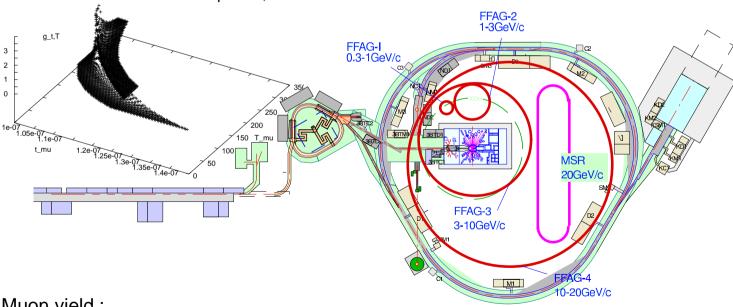


Table A.1: Construction Cost Rollup per Components for Study-II Neutrino Factory. All costs are in FY01 dollars.

System	Magnets (\$M)	RF power (\$M)	RF cav. (\$M)	Vac. (\$M)	PS (\$M)	Diagn. (\$M)	Cryo (\$M)	Util. (\$M)	Conv. Facil. (\$M)	Sum (\$M)
Proton Driver	5,5	7.0	66.1	9.8	26.6	2.2	28.5	<u></u>	21.9	167.6
Target Systems	30.3			0.8	3.5	8.0	18.8		30.2	91.6
Decay Channel	3.1			0.2	0.1	1.0	0.2			4.6
Induction Linacs	35.0		90.3	4.4	163.3	3.0	3.6		19.5	319.1
Bunching	48.8	6.5	3.2	2.7	2.1	5.0	0.3			68.6
Cooling Channel	127.6	105.6	17.7	4.3	4.8	28.0	9.5		19.5	317.0
Pre-accel. linac	46.3	68.4	44.1	7.5	3.0	6.0	13.6			188.9
RLA	129.0	89.2	63.4	16.4	5.6	4.0	28.9		19.0	355.5
Storage Ring	38.5			4.8	2.2	29.0	4.8		28.1	107.4
Site Utilities								126.9		126.9
Totals	464.1	276.7	284.8	50.9	211.2	86.2	108.2	126.9	138.2	1,747.2

• Study IIa , larger A_n , FFAG \rightarrow less cooling ?


Japan NuFact. Scaling FFAG R&D 2

- p-Driver : JPARC installation, 50-GeV, 3.3×10^{14} ppp, 8 b/p, 0.3 Hz rep. rate / 0.75 MW (first beam 2006)
- Four muon FFAG's : 0.2-1 GeV, 1-3, 3-10 (SC), 10-20 (SC), [reasonable E span / magnet ΔR]
- · using high gradient (in 10 MV/m range) / low frequency RF (5-25 MHz) [fast acceleration / large ϵ_l]

Interest of the FFAG method :

- compact ($R \approx 200$ m), technology simpler (potentially cheaper), can be built earlier (less R&D)
- cooling : longitudinal can be avoided : low freq. $RF \rightarrow$ large longitudinal acceptance (expected $\pm 50\%$ at injection)
- potential for transverse cooling in 1st ring

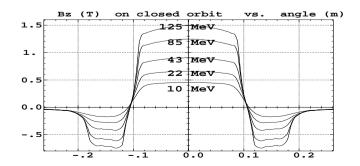
20ns/300 \pm 50% MeV bunch captured, $\approx 1.5 \pi$ eV.s

Muon yield :

- Acceleration rate ≈ 1 MV/m on average (cf RLA, 5 MV/m range), hence large acceleration distance, transmission about 50% (cf. 75% of US Study II RLA scheme)
- yet acceptance is large transversally, about 3π cm norm. ; longitudinal in range 1.5 π eV.s.

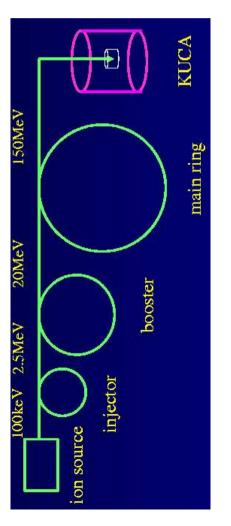
 $> 210^{20}$ dec./Y/MW/straight • it results muon yield close to 0.3 /p_{50GeV}

Extensive R&D programs : BD, NC/SC magnets, high gradient RF, rapid cycling, extraction ...



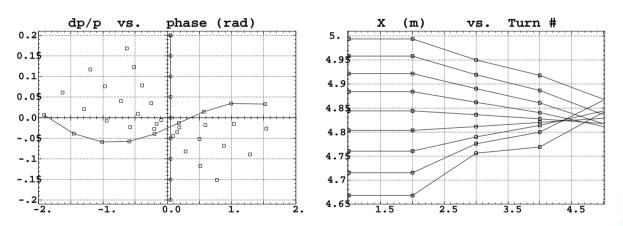
First accelerated beam 1999				
$E_{inj} - E_{max}$	keV	50 - 500		
orbit radius	m	0.8 - 1.14		
lattice / K		DFD imes 8 / 2.5		
$eta_r,\ eta_z$ max.	m	0.7		
$ u_r / u_z$		2.2 / 1.25		
RF swing	MHz	0.6 - 1.4		
voltage p-to-p	kV	1.3 - 3		
cycle time	ms	1		
1.5 F/D=3.12 F/D=3.12 F/D=3.12 F/D=3.90	easurement une shift leger resonance fill fileger resonance fill fileger resonance man easily and the service of the service o	x 3.0		

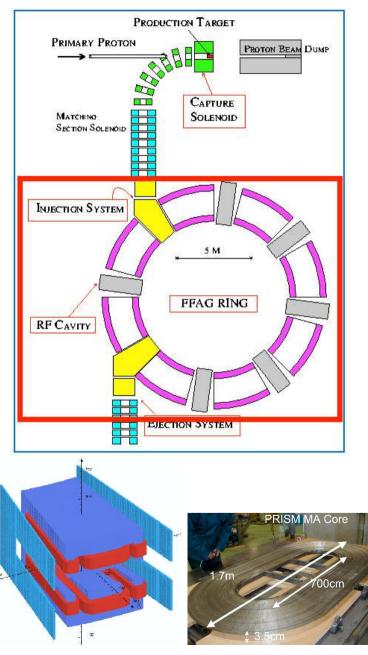
150 MeV FFAG



First beam 2003. Reached 100 MeV full ΔR					
$E_{inj} - E_{max}$	MeV	12 - 150			
orbit radius	m	4.47 - 5.20			
lattice / K		$DFD\times12/7.6$			
$eta_r \mid eta_z$ max.	m	2.5 / 4.5			
$ u_r \mid u_z$		3.7 / 1.3			
B_D / B_F	Т	0.2-0.78 / 0.5-1.63			
gap	cm	23.2 - 4.2			
RF swing	MHz	1.5 - 4.5			
voltage p-to-p	kV	2			
rep. rate	Hz	250			

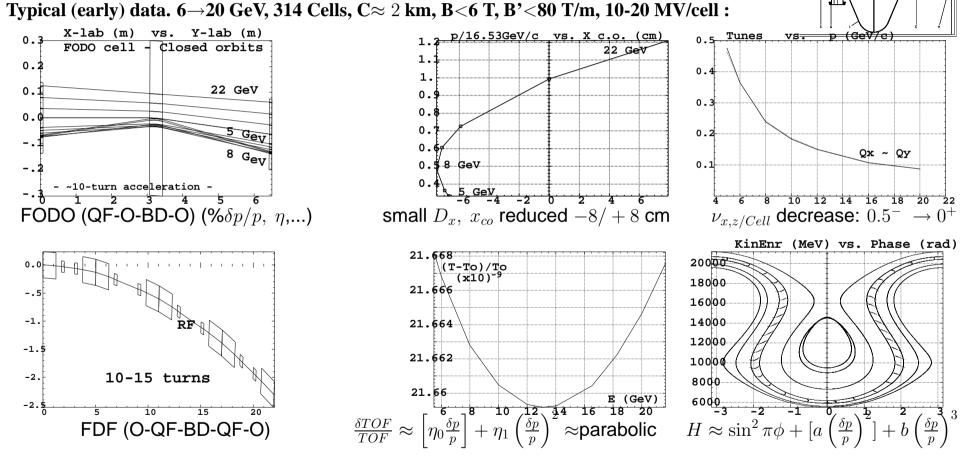
Next FFAG beam : 2005


ADS/Reactor experiment facility, in construction at KURRI Institute 150 MeV / 100 µA


PRISM : Program started 2003, commissionning 2007

FFAG used as phase rotator, for momentum compression p=68MeV/c +/-20% down to +/-2% in 6 turns

- DFD lattice 14t triplet yoke, 120 kW/triplet
- *K*, B_F/B_D variable \rightarrow quasi-decoupled ν_x , ν_z adjustments
- H / V apertures : 1 / 0.3 m
- acceptance : 4 π cm.rad imes 0.65 π cm.rad
- RF : 5-gap cavity, 33 cm gap, ≈ 2 MV/turn



- Optics design : large acceptance achieved
- Magnet design : completed, $\xi=0$
- RF system : more than 160kV/m at 5MHz expected
- difficult task : injection & extraction

3 Non-scaling FFAGs, linear optics

- New concept, introduced in the late 90's, for muons : synchrotron-like cell ! linear optical elements & fixed fields
- Orbit position moves in the course of acceleration, and tunes change unlike "scaling" FFAG
- Compared to RLA's : more turns hence less RF ; FFAG rings (2-3) are in smaller # than RLA arcs ($2 \times 4 5$ pass)

Linear, non-scaling optics induce a series of consequences :

- large acceptance ($\approx 3 \text{ cm}$) \leftarrow linear fields. Large momentum acceptance \Rightarrow prone to less (no ?) cooling
- rapid acceleration ($\approx 2-3$ E gain over ≈ 10 turns) \leftarrow high freq./ \vec{E} RF, near-crest \leftarrow small δ TOF over E span
- reduced circumference (hence μ decay loss) compared to "scaling" \leftarrow circumf. factor $R/\rho < 2$
- magnets have reasonable size \leftarrow reasonable horizontal beam excursion \leftarrow small D_x

non-scaling FFAGs (cont'd) :

In practice,

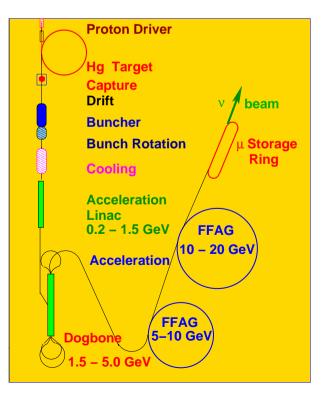
- tens of cells cause Xing of forests of integer and $\frac{1}{2}$ integer resonances.

This has harmful effects on beam transmission, that needs investigation

- crossing is fast though, this should result in not too stringent tolerance on alignements and field defects - needs more investigation

- longitudinal motion is strongly non-linear. Expected momentum acceptance in 1-2 eV.s range - needs more investigation.

Main conclusions, in present state of design optimisations :


- costs: above 5 GeV, non-scaling linear FFAG yield lower cost/GeV than RLA. below 5 GeV : needs further investigation.

- a new muon acceleration scheme has been produced, RLA + non-scaling FFAG [NuFact04] :

- muon rate : of the order of | 0.3 $\mu/p_{20GeVrange}$

Beam from cooling/pre-acceleration

```
\downarrow \\ \mathbf{dogbone \ RLA} \ [1.5 - 5 \ \mathbf{GeV}] \\ \downarrow \\ \mathbf{non-scaling \ FFAG} \ [5 - 10 \ \mathbf{GeV}] \\ \downarrow \\ \mathbf{non-scaling \ FFAG} \ [10 - 20 \ \mathbf{GeV}] \\ \end{vmatrix}
```


"There is no scheme with 3 FFAGs at this point. [SB] Low energy FFAG case (2.5 \rightarrow 5 GeV) :

. Present 2.5 \rightarrow 5 FFAG cost/GeV is comparable to the Study-II 2.5 \rightarrow 20 cost/GeV.

. No good costing study concerning 1.5 \rightarrow 5 GeV RLA

. No good costing study concerning RLA + 2.5 \rightarrow 5 GeV FFAG stage. Might still be cost effective ?

Typical FFAG lattice data :

Energy	(GeV)	2.5→5	5→10	10 → 20
No. of turns		6.0	9.9	17.0
No. of cells		64	77	91
D length	(cm)	54	69	91
D radius	(cm)	13.0	9.7	7.3
D pole tip field	(T)	4.4	5.6	6.9
F length	(cm)	80	99	127
F radius	(cm)	18.3	14.5	12.1
F pole tip field	(T)	2.8	3.6	4.4
No. of cavities		56	69	83
RF voltage	(MV)	419	516	621
Circumference	(m)	246	322	426
Decay	(%)	6.4	6.8	7.7
Total cost	(PB)	71.6	77.5	88.9
Cost per GeV	(PB/GeV)	28.7	15.5	8.9

Drift beam **Buncher Bunch Rotation** u Storage Rina Cooling **Acceleration** Linac 0.2 - 1.5 GeV **FFAG** 10 – 20 GeV Acceleration **FFAG** 5-10 GeV Dogbon - 5.0 GeV 11000 4500 750 300 250 1400 300 750

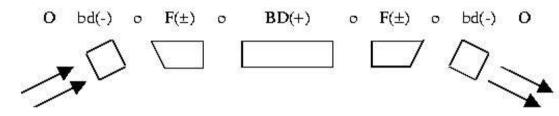
Proton Driver

Hg Target Capture

1000

Dogbone :

1 GeV linac, 3.5 pass. 200 MHz SCRF. Acceptance: 3 cm / 0.05 eV.s, norm ($\delta p/p = \pm 17\%$, bunch length= $\pm \lambda_{RF}/4$).


NuFact05, June 21-26, 2005

4 Isochronous lattice, non-linear optics

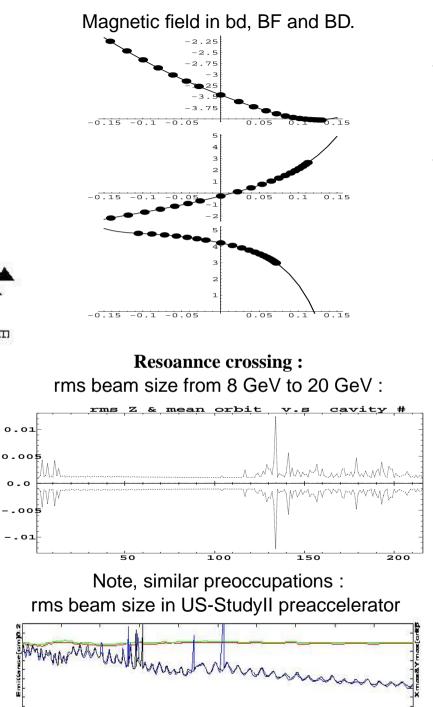
A non-linear, non-scaling type of FFAG, "non-linear cyclotron".

It has the advantage of optimum, on-crest acceleration.

Ex.: lattice for 8 to 20 GeV / 16 turns / 123 cell ring.

2.4 0.45 0.5 0.62 0.5 1.26 0.5 0.62 0.5 0.45 2.4 m $B_{bd}(x) = -3.456 - 6.6892 x + 9.4032 x^2 - 7.6236 x^3 + 360.38 x^4 + 1677.79 x^5$ $B_{BF}(r) = -0.257 + 16.620 r + 29.739 r^2 + 158.65 r^3 + 1812.17 r^4 + 7669.53 r^5$ $B_{BD}(x) = 4.220 - 9.659 x - 45.472 x^2 - 322.1230 x^3 - 5364.309 x^4 - 27510.4 x^5$

Possibility of insertions , with the adavntages of


- 1. reduced ring circumference,
- 2. easier injection and extraction,
- 3. space for beam loss collimators,

4. RF gallery extending only above the insertions, not above the whole ring,

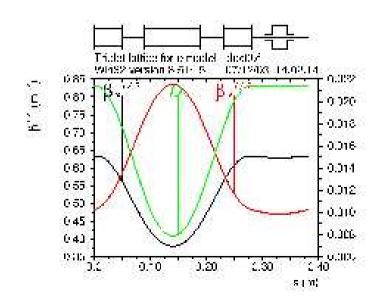
5. 4-cell cavities usable, thus reducing, by a factor of four, the total number of rf systems.

A remark on 6-D tracking tools :

Strong need of performing codes for end-to-end simulations

Emit_X

Emit Y


5 Conclusion : an e-model of a muon non-scaling FFAG is needed

"Since no non-scaling FFAG has ever been built, there is interest in building a small model which would accelerate electrons and demonstrate our understanding of non-scaling FFAG design. "

[Review of Current FFAG Lattice Studies in North America, JS Berg et als, 2004]

Goals for an electron model :

- resonance crossing
- multiple fixed-point acceleration
- input/output phase space
- stability, operation
- error sensitivity, error propagation
- magnet design, correctors
- diagnostics

an e-model of a muon linear non-scaling FFAG					
Energy	MeV	10 to 20			
number of turns		5 to 11			
circumference	m	17			
lattice		FDF			
tune variation		<0.5			
number of cells		45			
cell length	т	0.38			
RF drift length	ст	10			
CF magnets:					
- length F/D	ст	5 / 10			
- field F/D	G	375 / 107			
- gradient F/D	T/m	6 / -5			
- apertures	ст	1.2×1.8			
alignement tolerances					
gradient tolerances					
length variation	rel.	$2 \ 10^{-3}$			
RF frequency	GHz	3			
peak RF voltage	kV	<80			
h		171			
RF power	kW	<1.5			
max. I (beam loading)	mΑ	100			

Typical - not the most recent, though - parameters of

Many more details on Friday :

Geberal talk

scaling, non-scaling, isochronous FFAGs - design, beam dynamics, components electron model

Thank you for listening