

Frascati, June 21

1

Neutrino masses and neutrino mixing

Eligio Lisi INFN, Bari, Italy

Outline:

- 3v framework: Introduction and notation
- Constraints from oscillation searches
- Constraints from non-oscillation searches
- Summary and conclusions

Mainly based on: hep-ph/0506083 (2005 review), hep-ph/0505081, hep-ph/0408045; in collab.with: G.L. Fogli, A. Marrone, A. Melchiorri, A. Palazzo, A.M. Rotunno, P. Serra, J. Silk See references therein for credits to experimental and theoretical works in v physics

3v framework: Introduction

Neutrino masses, mixing and oscillations are established facts

 Δm^2 -driven oscillations δm^2 -driven oscillations (about half-period seen in both cases)

Frequencies and amplitudes can be embedded in a 3v scenario

For many purposes, a 1-significant-digit summary is enough (flavors = e μ τ):

$$\begin{split} \delta m^2 &\sim 8 \times 10^{-5} \text{ eV}^2 & \sin^2 \theta_{12} \sim 0.3 \\ \Delta m^2 &\sim 3 \times 10^{-3} \text{ eV}^2 & \sin^2 \theta_{23} \sim 0.5 \\ m_\nu &< O(1) \text{ eV} & \sin^2 \theta_{13} < \text{few}\% \\ \text{sign}(\pm \Delta m^2) \text{ unknown} & \delta \text{ (CP) unknown} \end{split}$$

At NuFact'05, a more refined summary is appropriate ($\pm 2\sigma$):

 $\delta m^2 = 7.92 \left(1 \pm 0.09 \right) \times 10^{-5} \text{ eV}^2 \quad \sin^2 \theta_{12} = 0.314 \left(1^{+0.18}_{-0.15} \right)$ $\Delta m^2 = 2.4 \left(1^{+0.21}_{-0.26} \right) \times 10^{-3} \text{ eV}^2 \quad \sin^2 \theta_{23} = 0.44 \left(1^{+0.41}_{-0.22} \right)$

 $(m_{\beta}, m_{\beta\beta}, \Sigma) < O(1) \text{ eV}$ $\sin^2 \theta_{13} < 3.2 \times 10^{-2}$

Second significant digit may be relevant in some contexts, e.g., prospective studies of future precision experiments (and is also necessary for book-keeping progress in estimates)

In such cases, mass-mixing parameters must be precisely defined

Consensus on conventions and notation desirable

3v framework: Notation

<u>Mixing</u>: No need to change the PDG convention for U

$$U = O_{23} \,\Gamma_{\delta} \,O_{13} \,\Gamma_{\delta}^{\dagger} \,O_{12}$$

with
$$\Gamma_{\delta} = \operatorname{diag}(1, 1, e^{+i\delta})$$

U mixes fields in the CC interaction lagrangian,

$$\nu_{\alpha L} = \sum_{i=1,2,3} U_{\alpha i} \,\nu_{iL} \quad (\alpha = e, \mu, \tau)$$

and thus U* mixes one-particle states,

$$\left|\nu_{\alpha}\right\rangle = \sum_{i=1,2,3} U_{\alpha i}^{*} \left|\nu_{i}\right\rangle \qquad \leftarrow \mathrm{PDG}$$

In the following, we shall limit ourselves to the two inequivalent CP-conserving cases (U=U*) with $e^{i\delta}=\pm 1$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & \pm s_{13} \\ 0 & 1 & 0 \\ \mp s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $[\cos \delta = \pm 1 = "CP parity"]$

The two cases are transformed into one another through:

$$+s_{13} \rightarrow -s_{13}$$
 (CP parity flip)

<u>Masses</u>: labels and splittings

Consensus labels: doublet= (v_1, v_2) , with v_2 heaviest in both hierarchies

$$\delta m^2 = m_2^2 - m_1^2 > 0$$

Sign of smallest splitting: conventional. The relative v_e content of v_1 and v_2 is instead physical (given by MSW effect)

Note:
$$|m_3^2 - m_1^2| = \begin{cases} \text{largest splitting (N.H.)} \\ \text{next-to-largest splitting (I.H.)} \end{cases}$$

 $\Rightarrow \Delta m_{31}^2$ (or Δm_{32}^2) change physical meaning from NH to IH

We prefer to define the 2nd independent splitting as:

$$\Delta m^2 = \left| \frac{\Delta m_{31}^2 + \Delta m_{32}^2}{2} \right| = \left| m_3^2 - \frac{m_1^2 + m_2^2}{2} \right|$$

so that the largest and next-to-largest splittings, in both NH & IH, are given by:

and only one physical sign distinguishes NH (+) from IH (-), as it should be:

$$(m_1^2, m_2^2, m_3^2) = \frac{m_2^2 + m_1^2}{2} + \left(-\frac{\delta m^2}{2}, +\frac{\delta m^2}{2}, \pm \Delta m^2\right)$$

sign($\pm \Delta m^2$) can be determined - in principle - by interference of Δm^2 -driven oscillations with some Q-driven oscillations, provided that sign(Q) is known. Two ways (barring new neutrino physics):

Q = $V_{MSW}(x) = \pm \sqrt{2}G_F N_e(x)$ (only in matter & for s₁₃>0)

 $Q = \delta m^2 > 0$ (also in vac. & for s₁₃=0, but hard)

The sensitivity to such interference effects, suppressed by the smallness of s_{13} and/or of $\delta m^2 / \Delta m^2$, is very weak within current data.

In the next figure we shall see, e.g., how small is the current effect of δm^2 in "distinguishing" the two hierarchies, within an analysis of SK_{ATM} + K2K + CHOOZ data with (Δm^2 , s^2_{23} , s^2_{13}) unconstrained

Constraints on (Δm^2 , s₂₃, s₁₃) from SK_{ATM}+K2K+CHOOZ

with (δm^2 , s^2_{12}) fixed at their best-fit values from solar+KamLAND

Four cases with slight differences: $[sign(\pm \Delta m^2) = \pm 1] \otimes [cos \delta = \pm 1]$

Slight preference (<1 σ) for s₁₃=0 and $\delta = \pi$ (over $\delta = 0$) Very tiny difference at s₁₃=0 (entirely due to $\delta m^2 > 0$)

Previous cases $[\operatorname{sign}(\pm \Delta m^2) = \pm 1] \otimes [\cos \delta = \pm 1]$ in terms of the other two parameters (s_{13} marginalized)

at 1, 2, and 3 sigma*

Four cases ~equivalent phenomenologically in the parameters (Δm^2 , s^2_{23})

Weak ($<1\sigma$) but "stable" preference for less-thanmaximal mixing $(s^{2}_{23} < 1/2)$;

preference driven by δm^2 -induced effects; present also for $s_{13}=0$

* $\Delta \chi^2 = (n\sigma)^2$ hereafter. Consensus on "typical" C.L. contours also desirable

δm^2 effects are small, but not smaller than others one takes care of

(Bounds consistent with MACRO, Soudan 2)

For free s_{13}^2 , marginalizing over $[sign(\pm \Delta m^2) = \pm 1] \otimes [cos \delta = \pm 1]$, we get

Constraints on $(\delta m^2, s_{12}, s_{13})$ from Solar v + KamLAND

Solar data alone identify a single LMA solution in the $(\delta m^2, \tan^2 \theta_{12})$ plane

LMA parameters are dominated by SNO and SK, sensitive to the ⁸B v flux

SNO NC determination of the ⁸B ν flux twice more accurate than typical SSM predictions

LMA param. basically SSM-independent

Towards precision neutrino physics

LEP EW Working Group, 2005

Solar neutrinos (Bari group), 2005

KamLAND dominates δm^2 constraints

Main impact of 2005 SNO data (at s_{13} =0):

Slight increase in solar best-fit param. $(\delta m^2, s^2_{12})$, and thus better agreement with the latest data from KamLAND

Note change of scale: $\log \tan^2 \theta_{12} \rightarrow \ln \sin^2 \theta_{12}$. In general, consensus on trigonometric functions of θ_{ij} is desirable for homogeneous comparison

matter effects with standard size (V = $\sqrt{2} G_F N_e$) confirmed

 $V(x) \rightarrow a_{MSW} V(x)$

Solar v data also sensitive to s_{13} ...

Interesting constraints on s_{13}^2 from current solar+KamLAND data:

All solar data (radiochemical + Cherenkov) and KamLAND data (rate + spectrum shape) cooperate in setting limits on s_{13}^2

Finally, combining solar & terrestrial v oscillation data (-LSND) ...

2005 global 2σ bounds (95% CL), marginalized over the four cases $[\operatorname{sign}(\pm \Delta m^2)] \otimes [\cos \delta = \pm 1]$:

$$\begin{split} \delta m^2 &= 7.92 \, (1^{+0.09}_{-0.09}) \times 10^{-5} \, \, \mathrm{eV}^2 \\ \Delta m^2 &= 2.4 \, (1^{+0.21}_{-0.26}) \times 10^{-3} \, \, \mathrm{eV}^2 \\ \sin^2 \theta_{12} &= 0.314 \, (1^{+0.18}_{-0.15}) \\ \sin^2 \theta_{23} &= 0.44 \, (1^{+0.41}_{-0.22}) \\ \sin^2 \theta_{13} &< 3.2 \times 10^{-2} \end{split}$$

with very small correlations

Needless to say, new physics beyond the standard 3v framework (e.g., from LSND/MiniBOONE) might alter such bounds

Probing absolute ν masses through non-oscillation searches

Three main tools: (m_{β} , $m_{\beta\beta}$, Σ)

 β decay: m²_i ≠ 0 can affect spectrum endpoint. Sensitive to the "effective electron neutrino mass":

$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$

-1

2) Ov2β decay: Can occur if m²_i ≠ 0 and v=v. Sensitive to the "effective Majorana mass" (and phases):

$$m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

3) Cosmology: m²_i ≠ 0 can affect large scale structures in (standard) cosmology constrained by CMB+other data. Sensitive to:

$$\Sigma = m_1 + m_2 + m_3$$

Even without non-oscillation data, the $(m_{\beta}, m_{\beta\beta}, \Sigma)$ parameter space is constrained by previous oscillation results:

Significant covariances

Partial overlap between the two hierarchies

Large $m_{\beta\beta}$ spread due to unknown Majorana phases

But we do have information from non-oscillation experiments:

1) β decay: no signal so far. Mainz & Troitsk expts: $m_{\beta} < O(eV)$

2) $0v2\beta$ decay, no signal in all experiments, except in the most sensitive one (Heidelberg-Moscow). Rather debated claim. Claim accepted: $m_{\beta\beta}$ in sub-eV range (with large uncertainties) Claim rejected: $m_{\beta\beta} < O(eV)$.

3) Cosmology. Upper bounds: Σ < eV/sub-eV range, depending on several inputs and priors. E.g., latest SDSS Lyα data crucial to reach sub-eV bounds (but: systematics?)

Ov2β claim rejected

 $0\nu 2\beta$ claim (

I.H

 10^{-1}

N.H

1

10

10⁻²

10

mBB

(eV)

Cosmological bound dominates, but does not probe hierarchy yet

 Σ (eV)

 ν oscillation data +

 Σ (CMB+2dF+Ly α)

C.L. = 2σ

1

E.g., if $0v2\beta$ claim accepted but SDSS Ly α data discarded:

Combination of all data (osc+nonosc.) possible

Complete overlap for the two hierarchies (degenerate spectrum with "large" masses: m_{1,2,3} ~ 0.5 eV)

High discovery potential in future ($m_{\beta}, m_{\beta\beta}, \Sigma$) searches

Summary and Conclusions

- We have entered the era of precision neutrino physics. Consensus about conventions, mass-mixing parameter notation, C.L. contours, and graphical presentations is desirable for uniform comparison
- Within the standard 3v framework, remarkable consistency of oscillation data (except LSND) with parameters: (but sensitivity to $S_{13} \neq 0$, hierarchy, and δ_{CP} requires future searches)

$$\begin{split} \delta m^2 &= 7.92 \, (1^{+0.09}_{-0.09}) \times 10^{-5} \, \mathrm{eV}^2 \\ \Delta m^2 &= 2.4 \, (1^{+0.21}_{-0.26}) \times 10^{-3} \, \mathrm{eV}^2 \\ \sin^2 \theta_{12} &= 0.314 \, (1^{+0.18}_{-0.15}) \\ \sin^2 \theta_{23} &= 0.44 \, (1^{+0.41}_{-0.22}) \\ \sin^2 \theta_{13} &< 3.2 \times 10^{-2} \end{split}$$

- Combination with observables sensitive to absolute ν masses (m_{\beta}, m_{\beta\beta}, \Sigma) needs further understanding and new measurements
- Impressive and rapid progress in v physics in the last few years; but exciting challenges and possible surprises are ahead of us

Backup slides

