### Nucleon 05

Workshop on Nucleon Form Factors Frascati, October 12-14, 2005

# Experimental Studies on the Electric Form Factor of the Neutron

Bodo Reitz Jefferson Lab

## Outline

- Introduction
- History: Neutron Electric Form Factor from Cross Sections
- Double Polarization Experiments
  - Polarized Deuterium: e.g. JLab Hall C E93-026
  - Recoil Polarization: e.g. JLab Hall C E93-038
  - → Polarized Helium-3: e.g. JLab Hall A E02-013
- Summary/Outlook

#### EMFFs : Fundamental Property of the Nucleon

- EMFFs: functions of the hadron current operator
- Fundamental part of a "classical" nucleon theory
  - A testing ground for models constructing nucleons from quarks and gluons (e.g. Lattice QCD or GPDs)
  - Provides insight in spatial distribution of charge and magnetization
  - Wavelength of probe can be tuned by changing the momentum transfer Q:
    - < 0.1 (GeV/c)<sup>2</sup> integral quantities (charge radius, ... )
    - 0.1 10 (GeV/c)<sup>2</sup> internal structure of the nucleon hadronic structure of the photon (VMD) and nucleon structure (pion cloud constituent quarks / valence quarks
    - > 20  $(GeV/c)^2$  pQCD scaling
  - Connection to DIS and Compton scattering via framework of GPDs
- Caution:
  - at large Q (several times the nucleon mass, Compton wavelength) dynamical effects due to relativistic boosts are introduced, making the physical interpretation of EMFF more difficult (no simple Fourier transformation any more)
- Not to forget:
  - EMFF are also essential for understanding form factors of few-body systems, or for extraction of the strange form factors of the nucleons

#### Form Factors in Elastic Electron - Nucleon Scattering



with  $\tau = Q^2 / 4M^2$ ,  $\kappa$  the anomalous magnetic moment and  $\theta$  the scattering angle

## **Rosenbluth Separation**



- Measures  $d\sigma/d\Omega$  at constant  $Q^2$ ; intercept gives  $G_M$ , slope gives  $G_F$
- $G_{_{\rm F}}$  inversely weighted with Q<sup>2</sup>, increasing the systematic error above Q<sup>2</sup> ~ 1 (GeV/c)<sup>2</sup>
- Very sensitive to kinematics, acceptances, and radiative corrections

#### **Electric Form Factor of the Neutron**



 $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_M \frac{E'}{E} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2}\right)$ 

- No target with free neutrons
  - elastic scattering of D or <sup>3</sup>He
- Challenges:
  - Contribution from the proton
  - Elastic cross section gets small (limiting method to low Q<sup>2</sup>)
  - Nuclear effects, model dependencies, FSI, MEC
- Net charge of neutron is 0,
  - $G_{E}^{n}$  is small at low Q<sup>2</sup>
- Cross section dominated by  $G_{M}^{n}$

#### Electric Form Factor of the Neutron at Higher Q<sup>2</sup>



- No target with free neutrons
  - quasi-elastic scattering of D
- Nuclear effects, model dependencies, FSI, MEC
- Contributions from the proton
- Contributions from magnetic form factors dominate

### Constraints on $G_{F}^{n}$ from the Inverse Reaction

See e.g.: S. Kopecky et al., Phys. Rev. C56 (1997) 2229

- Scattering of thermal neutrons on atomic electrons
- Kinematically limited to very low momentum transfers
- Gives charge radius of the neutron

• 
$$\langle r_{ch,n}^2 \rangle = -0.1148(23) \, \text{fm}^2$$

• Charge radius is related to the slope of  $G_{F}^{n}$  at Q<sup>2</sup>=0

## Modern Era

- Akhiezer et al., Sov. Phys. JETP 6, 588 (1958) and Arnold, Carlson and Gross, PR C 23, 363 (1981) showed that:
  - accuracy of form-factor measurements can be significantly improved by measuring an interference term  $G_E G_M$  through the beam helicity asymmetry with a polarized target or with recoil polarimetry
- It took a whille (over 30 years) to develop:
  - Polarized electron beams with high intensity (~100uA) and high polarization (>70%, strained GaAs, high-power diode/TiSa lasers)
  - Beam polarimetry with 1-3% accuracy
  - Polarized targets with high polarization
  - Ejectile polarimeters with large analyzing powers

### Double Polarization Approaches to Measure $G_{r}^{n}$

- <sup>2</sup>D(e, e'n) with polarized beam and polarized ND<sub>3</sub> target (NIKHEF, JLab Hall C) limitations: low current (~80 nA) deuteron polarization (25%)
- <sup>2</sup>D(e, e'n) from LD<sub>2</sub> target and utilizing recoil polarimeter (Bates, Mainz, JLab Hall C) limitations: Figure of Merit of polarimeter
- <sup>3</sup>He(ē, e'π) with polarized beam and polarized <sup>3</sup>He target (Bates, NIKHEF, Mainz, JLab E02-013) limitations: current on target (12 μA), target polarization (40%), nuclear medium corrections
   For all three types:
  - Asymmetry measurement, interference enhances the small amplitude contribution
  - Avoids Rosenbluth separation
  - Avoids subtraction of large proton contribution

## Spin Transfer Reaction



Polarized electrons transfer longitudinal polarization due to  $G_{\rm E}$ ,

but transverse polarization due to  $G_{M}$ 

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E_\epsilon + E_{\epsilon'}}{2M} \tan(\theta_\epsilon/2)$$

Polarimeter only sensitive to transverse polarization components, therefore magnet is needed to precess longitudinal component to normal

By measuring the ratio, no error contributions from analyzing power or beam polarimetry

### E93-038: $G_{F}^{n}$ in Hall C via ${}^{2}H(\vec{e},e'\vec{n})$



- quasi-elastic kinematics: insensitive to nuclear potential and MEC/IC
- ratio Pt/Pl neither depends on absolute value of analyzing power nor beam polarization
- Charybdis magnet for spinprecession
- Experiment run in 2000/2001
- Q<sup>2</sup>=0.45, 1.13 and 1.45 (GeV/c)<sup>2</sup>
- Similar experiments at MIT Bates and at MAMI A1 and A3 covering Q<sup>2</sup> = 0.15 - 0.8 (GeV/c)<sup>2</sup>

## Beam / Target Asymmetry



$$A = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

 $= A_{\perp} \sin \theta^{\star} \cos \phi^{\star} + A_{\parallel} \cos \theta^{\star}$ (assuming  $P_e = P_n = 1$ )

 measure both components (by rotating target spin)

or

rely on polarimetry

$$A_{\perp} = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)}{(\frac{G_{E}^{n}}{G_{M}^{n}})^{2} + (\tau+2\tau(1+\tau)\tan^{2}(\theta/2))}$$
$$A_{\parallel} = -\frac{2\tau\sqrt{1+\tau+(1+\tau)^{2}\tan^{2}(\theta/2)}\tan(\theta/2)}{(\frac{G_{E}^{n}}{G_{M}^{n}})^{2} + (\tau+2\tau(1+\tau)\tan^{2}(\theta/2))}$$

Cn Cn

(with  $au=Q^2/4m_N^2)$ 

## E93-026: $G_{e}^{n}$ in Hall C via <sup>2</sup> $\dot{H}(e,e'n)$

- Polarized Deuterium Target
  - $\rightarrow$  frozen <sup>15</sup>ND<sub>3</sub>
  - 5T magnetic field
  - dynamic polarization
- HMS spectrometer + neutron array
- Q<sup>2</sup> = 0.5 and 1.0 (GeV/c)<sup>2</sup>





G<sub>F</sub><sup>n</sup> from Ď(ė,e'n)p



• measuring 
$$A_{ed}^{\vee}$$
:  $\sigma(h,P) = \sigma_0 (1 + hP A_{ed}^{\vee})$ 

- quasielasitc kinematics
  - low sensitivity to potential, and to MEC and IC
  - sensitive to  $G_{F}^{n}$

## Results on $G_{E}^{n}$ from $A(Q^{2})$ and T20



R.Schiavilla and I.Sick, Phys.Rev.C64 (2001) 041002 method is also limited to Q<sup>2</sup> below 2 (GeV/c)<sup>2</sup>

## Data on $G_{E}^{n}$ from Double Polarization Experiments



Galster:

parametrization fitted to old (<1971) data set

- For Q<sup>2</sup> > 1 (GeV/c)<sup>2</sup>: similar Q<sup>2</sup> behaviour as G<sub>E</sub><sup>p</sup>
- Most recent results (from Mainz and JLab) using all three approaches are in excellent agreement
- no accurate data available for Q<sup>2</sup> > 1.5 (GeV/c)<sup>2</sup>

### <sup>3</sup>He as an Effective Neutron Target



- Naïve picture:
  - neutron carries the spin of <sup>3</sup>He, protons are unpolarized
- Actual calculations:
  - neutron polarization ~86%; proton polarization ~-2.8%
  - further medium effects: reduction of cross section (reproduced by Glauber approximation type calculations e.g.)

### Generalized Eikonal Approximation (GEA)

#### Calculations by M. Sargsian

- Calculations in the framework of GEA
- Fully relativistic
- Includes FSI
- Good agreement with JLab A(e,e'p) data for Q<sup>2</sup> > 1 (GeV/c)<sup>2</sup> (Garrow et al.)
- FSI accurate for p<sub>miss</sub> < 250 MeV/c</li>



## The Hall A Polarized Helium-3 Target

#### So far: (G<sub>M</sub><sup>n</sup>, A1n, g2n, GDH, SAGDH)

- Spin exchange between optically pumped alkali-metal vapor and <sup>3</sup>He
- High pressure cell, 10 atm, 40cm long
- Targetpolarisation ~40%
- Beam currents up to 15µA
- Luminosity 1.0\*10<sup>36</sup> e-neutron/s/cm<sup>2</sup>





#### For $G_{E}^{n}$ in Hall A

- Improved cell geometry
- Laser-Combiner with fiber optics
- K/Rb mixture instead of pure Rb
- Metal-box: magnet plus shielding

#### Two New Detector Systems (Large Acceptance, Open Geometry)



#### BigBite (electrons)

- large drift chamber,
  15 planes, 2500 wires
- lead glass calorimeter (pion separation)
- scintillators

#### BigHAND (neutrons)

- 240 neutron bars
- 180 veto detectors
- 4.7m × 1.6m active area
- good timing resolution (300 ps)
- good efficiencies for neutrons, high thresholds to minimize background



# E02-013: $G_{E}^{n}$ for large Q<sup>2</sup> in Hall A





- medium luminosity of the Hall
  A pol. <sup>3</sup>He target allows use of two large acceptance devices with open geometry
- better FOM than with deuterium and recoil polarimetry

## Boosting the Recoil Polarization Method to Measure $G_{F}^{n}$ at Higher Q<sup>2</sup>

- so far: highest Q<sup>2</sup> = 1.5 (GeV/c)<sup>2</sup> with this method (E93-038, Hall C)
- approved Hall C experiment (E04-110) will
  - utilize successful approach of E93-038
  - increase acceptance of polarimeter
    (larger neutron array, tapering the poles of Charybdis magnet)
  - increase efficiency of the neutron polarimeter (more neutron detectors, steel converters)
  - → with JLab at 6 GeV:  $Q^2 = 4.3$  (GeV/c)<sup>2</sup> and  $\partial G_F^n = 0.002$  in 25 days
  - with JLab at 12 GeV: Q<sup>2</sup> values up to 8.1 (GeV/c)<sup>2</sup> are possible (using HMS in Hall C)

### Spectrometers and Beams for Measurements at Higher Momentum Transfers

present: BigBite or HRS(HMS)

- maximum beam energy 6 GeV
- BigBite has large solid angle (76 msr) but electron momentum limited to 1.5 GeV/c, therefore it needs to stay at backward angles (smaller cross section)
- HRS/HMS would allow larger electron momenta, but solid angle is significantly smaller (6 msr / 8 msr)
- below ~4 (GeV/c)<sup>2</sup> BigBite wins

after 12 GeV upgrade:

- using 8.8 and 11 GeV beam and existing HMS and neutron detector:
  Q<sup>2</sup> values of ~6.4 (GeV/c)<sup>2</sup> feasible
- using a larger acceptance spectrometer (SuperBigBite, MAD) for electron detection:
  Q<sup>2</sup> values of up to 8.0 (GeV/c)<sup>2</sup> seem feasible



## Summary / Outlook

| Laboratory    | Collaboration | Q² (GeV/c²)      | Reaction   | Status    |  |
|---------------|---------------|------------------|------------|-----------|--|
| MIT-Bates     | E85-05        | 0.26             | D(e,e'n)   | 1994      |  |
|               | Blast         | < 0.8            | D(ē,e'n)   |           |  |
|               | Blast         | < 0.8            | ³He(ē,e'n) |           |  |
| Mainz MAMI    | A3            | 0.31             | ³Ĥe(ē,e'n) | 1994      |  |
|               | A3            | 0.15, 0.34       | D(ē,e'īn)  | 1999      |  |
|               | A3            | 0.39             | ³He(ē,e'n) | 1999      |  |
|               | A1            | 0.67             | ³He(ē,e'n) | 1999/2003 |  |
|               | A1            | 0.3, 0.6, 0.8    | D(ē,e'n)   | 2004      |  |
| NIKHEF        |               | 0.21             | D(ē,e'n)   | 1999      |  |
| JLab          | E93-026       | 0.5, 1.0         | D(ë,e'n)   | 2001/2004 |  |
|               | E93-038       | 0.45, 1.15, 1.47 | D(e,e'n)   | 2003      |  |
|               | E02-013       | 1.3, 2.4, 3.4    | ³He(ē,e'n) | Approved  |  |
|               | E04-110       | 4.3              | D(ē,e'n)   | Approved  |  |
| JLab @ 12 GeV | Hall A        | > 6.0            | ³Ĥe(ē,e'n) | Feasible  |  |
| JLab @ 12 GeV | Hall C        | 6.0 - 8.0        | D(ē,e'n)   | Feasible  |  |

## Summary/Outlook

- Very active experimental program on electro-magnetic form factors of the nucleon at JLab and elsewhere
- possible because of the availability of polarized electron beam (>100uA, >75% polarized), polarized targets and polarimeters with high analyzing power
- Exciting new data on  $G_{e}^{n}$  from JLab (and MAMI), but also on  $G_{e}^{p}$  and  $G_{m}^{n}$
- JLab Experiment E02-013 will significantly increase our knowledge about the electric form factor of the neutron at higher momentum transfers
- Future plans to extend EMFF measurements at JLab



## Possible Boosts for G<sub>E</sub><sup>n</sup> Experiments: Polarized <sup>3</sup>He-Target Improvements

- Increase in usable beam current an polarization very desirable
- New laser technology is becoming available, allowing to combine light of several Lasers in a compact setup (E02-013 will use a 5-1 combiner)
- Modifications of the cell design with larger pumping cells (long term: cylindrical instead of spherical pumping cells) and improved gas flow
- coating of glass, modifications of the endcaps to decrease depolarization and increase durability
- Use of Rb/K mixture instead of pure Rb



## JLab Hall A During E02-013



### **GEA Results II**



•Asymmetry does not vary strongly within our bins in missing momentum





#### Constructing GPDs (Kroll et al.)



- Phenomenological ansatz, using
  - experimental data on q(x) from DIS (here CTEQ)
  - ansatz consistent with phenom. and theo. constraints (large -t and x: gaussian L.C. w.f., small -t and x Regge behavior)
  - simple ansatz, with only a few fit parameters, determined by fitting against F<sub>1</sub>, F<sub>2</sub> and F<sub>4</sub>
- Data on Electric Form Factor of Neutron is currently weakest point of the fit

## High-Q<sup>2</sup> Behaviour Or: Neutron Data Wanted!



## Jefferson Lab Experiment E02-013 Cross Section Asymmetry in ${}^{3}\vec{He}(\vec{e},e'n)$

To obtain  $G_{E}^{n}$  at three different  $Q^{2}$ 

| $Q^2$             | $E_i$ | $\theta_e$ | $p_e$ | $\theta_n$ | $p_n$ | $T_n$ |
|-------------------|-------|------------|-------|------------|-------|-------|
| $({\sf GeV/c})^2$ | GeV   | deg        | GeV/c | deg        | GeV/c | GeV   |
| 1.31              | 1.644 | 54.6       | 0.95  | 35.2       | 1.34  | 0.70  |
| 2.40              | 2.444 | 54.6       | 1.17  | 28.3       | 2.01  | 1.28  |
| 3.40              | 3.244 | 50.6       | 1.43  | 25.4       | 2.58  | 1.81  |

Approved beam time: 32 days Expected (statistical) uncertainty: less than 15% Scheduled for early 2006

# E02-013: Layout for <sup>3</sup>He(e,e'n)

