

Transverse Asymmetries in Elastic Electron Nucleon Scattering and the Imaginary Part of the Two-Photon Amplitude

Frank E.Maas

Institut de Physique Nucléaire de Orsay

Workshop on Nucleon Form Factors Frascati, October 12-14, 2005

Imaginary Part of Two-Photon-Exchange

- Beam Spin Normal Asymmetries in elastic $\vec{e} p$ scattering
 - SAMPLE@MIT-Bates: backward
 - HAPPEX@JLab: forward
 - G0@JLab: forward
 - E158@SLAC: forward
 - A4@MAMI: forward
- Beam Spin Normal Asymmetries in Møller scattering
 - E158@SLAC: forward
- Future Measurements

Beam Spin Normal Asymmetries in Elastic Scattering

- Single-Spin-Asymmetries: e^- Spin longitudinal, Parity Violating, ϕ -symmetric $A_{PV} = 10^{-6}$

Single-Spin-Asymmetries: *e*⁻ Spin transverse,
 Dependence on Azimuth Angle φ: *sin*(φ),

$$A_{\perp}^{beam} = 10^{-5}, A_{\perp}^{target} = 10^{-2}$$

W Two-Photon Exchange

$$M_{\text{non-flip}} = \frac{e^2}{Q^2} \bar{u}(k_2) \gamma_{\mu} u(k_1) \bar{u}(p_2) [\hat{G}_M(s,Q^2) \gamma_{\mu} - \hat{F}_2(s,Q^2) \frac{P^{\mu}}{M} + \hat{F}_3(s,Q^2) \frac{\gamma \cdot K P^{\mu}}{M^2}] u(p_1)$$

$$M_{\text{flip}} = \frac{m_e}{M} \frac{e^2}{Q^2} [\bar{u}(k_2) u(k_1) \bar{u}(p_2) [\hat{F}_4(s,Q^2) + \hat{F}_5(s,Q^2) \frac{\gamma \cdot K}{M}] u(p_1) + \hat{F}_6(s,Q^2) \bar{u}(k_2) \gamma_5 u(k_1) \bar{u}(p_2) \gamma_5 u(p_1)]$$

Observables

- 1-Photon forbidden Transitions in Nuclear States
- Elastic Cross Section Measurement (Real Part, Correction to 1-Photon)
- σ_{e^-p} σ_{e^+p} (Real Part, Correction to 1-Photon)
- ε -Dependence (at fixed Q²) (Real Part, Correction to 1-Photon)
- Recoil Polarization P_x, P_y, P_z (Real Part, Imaginary Part)
- Transverse Target Spin Asymmetry (Imaginary Part, forbidden in 1-Photon)
- Transverse Beam Spin Asymmetry (Imaginary Part, only in 2-Photon)

Single Spin Asymmetry in Elast. Scattering

$$\vec{P} - \vec{P}$$

$$\vec{S}_n = (\vec{k}_1 \times \vec{k}_2) / |\vec{k}_1 \times \vec{k}_2|$$

$$A_\perp = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\uparrow}}$$

$$A(\phi_e, \theta_e) = A_\perp(\theta_e) \vec{S}_n \cdot \vec{P}$$

Single Spin Asymmetry in Elast. Scattering

$$A_{\perp} = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\uparrow}}$$

$$A_{\perp} = -\frac{m_e}{M}\sqrt{2\epsilon(1-\epsilon)}\frac{\sqrt{1+\tau}}{\tau}(1+\frac{\epsilon}{\tau}\frac{|\tilde{G}_E|^2}{|\tilde{G}_M|^2})^{-1}$$

$$\times (-\tau I(\frac{\tilde{F}_3}{\tilde{G}_M}) - \frac{|\tilde{G}_E|}{|\tilde{G}_M|}I(\frac{\tilde{F}_4}{\tilde{G}_M}) - \frac{1}{1+\tau}(\tau + \frac{|\tilde{G}_E|}{|\tilde{G}_M|})I(\frac{\nu\tilde{F}_5}{M^2|\tilde{G}_M|}))$$

Imaginary Part: Study of Intermediate State Spectrum

Doubly Virtual Compton Scattering

integration over kinematics

Transverse Asymmetry in Elastic Scattering

- Systematic Studies of the 2-Photon-Amplitude at low Energies
- A_{\perp} proportional to Imaginary Part (Connect to Real Part via Dispersion Relations)
- "known" π N Amplitudes from π -Electro-Production for Calculation of A_⊥ (B.Pasquini MAID)
- Complementary Access to π -Electro-Production
- Electroweak Precision Experiments depend on $\gamma \, Z_0$ and W^+ W^- Box Graphs

Parity Violating Electron Scattering (A4, G0, Happex, SAMPLE, Q_{weak})

Parity Violation in Atomic Physics

 V_{ud}

- Generalized Parton Distributions

PV Experiments

A4 Measurement Principle

- Longitudinally or transversely polarized electrons
- Target: unpolarized protons
- Detector: scattering angle
- Counting experiment: $A = \frac{N^+ N^-}{N^+ + N^-}$

Experimental Conditions for PV Experiments

SAMPLE: e⁻,Air-Cherenkov(MIT-Bates)

HAPPEX: e⁻,magnetic Spectr., Integrating Det.

G0:p⁺,Time of Flight, Toroidal Magnetic field

A4: e⁻,EM-Calorimeter

F.M., 12.10.2005 – p. 13/38

SAMPLE at MIT/Bates

SAMPLE transverse beam asymmetry 20 A^{meas} (ppm) 0 -20 -40 100 200 300 400 0 φ (deg.)

Two Photon Physics: HAPPEX

 $\theta_e = 6^\circ, Q^2 = 0.1 (\text{GeV}/c)^2, E_e = 3 \text{ GeV } A_\perp = -6.6 \text{ ppm}$ $\pm 1.5 \text{ ppm (stat)} \pm 0.2 \text{ ppm (syst)} (\text{Kent Paschke})$ Afanasev: $A_\perp = -7.2 \text{ ppm (no cut in W of inelastic state)}$

 G_E^s , G_M^s and G_A^e separated over range $Q^2 \sim 0.1 - 1.0 (\text{GeV/c})^2$

Expected precision on A_n for forward angle G^0

- Data collection took place over 22-26 March 2004: 39 hrs (30 parity hrs) on LH2; 5.8 hrs (3.8 parity hrs) on Al.
- Projected statistical errors for the elastic scattering peak on LH2

Detectors	<θ _{CM} >	Proj. Stat. Error
1-4	19.03	1.3 ppm
5-8	21.65	1.3 ppm
9-12	26.12	1.3 ppm
13-14	32.35	2.4 ppm
15	37.4	2.9 ppm

Asymmetries & required correction

E158 at SLAC: Møller Scattering

Experiment principle

Raw Asymmetry =1.3x10⁻⁷ (130 ppb) \triangle (Apv) = 10⁻⁸ (10 ppb) <u>Need 10¹⁶ electrons</u>

Antonin VACHERET, CEA-Saclay Dapnia/SPhN SLAC E-158

PAVI 2004

E158 at SLAC: *ep* Scattering

E158 at SLAC: *ep* Scattering

Gorchtein

F.M., 12.10.2005 – p. 26/38

A4 at MAMI/Mainz

A4 fast *PbF*₂ Calorimeter

Calorimeter:

1022 PbF_2 Crystal in 146 Frames $\Theta = 30^{\circ}..40^{\circ}, \Phi = 0..2\pi$

Luminosity Monitors:

8 Integrating Water-Cherenkov Detectors $\Theta = 4.4^{\circ}..10^{\circ}, \ \Phi = 0..2\pi$

Full Coverage of the Azimuthal Angle \$

Strangeness Contribution

PRL 94, (2005) 152001, PRL 93 (2004) 022002

Extraction of physics asymmetry

Extract elastic counts N_i^+ , $N_i^$ from channel i = 1..1022

 $N_{Sec}^+ = \Sigma N_i^+, N_{Sec}^- = \Sigma N_i^-$

Normalization to target density (L=luminosity, I=beam current)

$$A_{exp}^{Sec} \equiv A_{exp}(\Phi_i) = \frac{\frac{N_{Sec}^+}{\rho^-} - \frac{N_{Sec}^-}{\rho^-}}{\frac{N^+}{\rho^-} + \frac{N^-}{\rho^-}}, \quad \rho^{\pm} = \frac{L^{\pm}}{I^{\pm}}$$

b Determination of A_{\perp}

 $E = 855.2 MeV, Q^2 = 0.23 (GeV/c)^2$, 50 h

 $A_{\perp} = (-7.62 \pm 2.34_{stat} \pm 0.80_{syst}) ppm$

b Determination of A_{\perp}

 $E = 569.3 MeV, Q^2 = 0.11 (GeV/c)^2$, 50 h

 $A_{\perp} = (-8.28 \pm 0.93_{stat} \pm 0.49_{syst}) ppm$

§ Comparison of A_{\perp} with Model Calculations

Intermediate State: Proton, πN States (MAID) (B. Pasquini)

PRL 94, 082001 (2005)

Elastic Scattering at Forward Angles

Hydrogen and Deuterium

Hydrogen and Deuterium

A4 transverse Programm

E_e [MeV]	θ_e [degrees]	$\delta \! A^p_\perp$ [ppm]	hours	$\delta\!A_{\perp}^{D}$ [ppm]	hours	$\delta\!A^n_\perp$ [ppm]
			proton		deuteron	(extracted)
315	$(35\pm5)\circ$	0.5	20	0.5	20	20
420	$(35\pm5)\circ$	0.5	40	0.5	35	11
510	$(35\pm5)\circ$	0.5	90	0.5	70	7
570	$(35\pm5)\circ$	0.5	90	0.5	70	7
854	$(35\pm5)\circ$	0.5	300	0.5	220	4
1200	$(35\pm5)\circ$	1	260	1	180	6
1500	$(35\pm5)\circ$	2	180	2	120	11
315	$(145\pm5)\circ$	3	90	2	130	10
420	$(145\pm5)\circ$	3	(230)	2	(320)	10
510	$(145\pm5)\circ$	4	(300)	3	(390)	13
570	$(145\pm5)\circ$	4	(370)	3	(390)	13
854	$(145\pm5)\circ$	8	(490)	7	(380)	28

Summary

- Transverse Single-Spin-Asymmetries SAMPLE, A4, G0, HAPPEX, E158
- Imaginary Part of the 2-Photon-Amplitude precision tool \rightarrow inelastic πN intermediate States
- Intermediate Inelastic States Dominate
- Systematic Study of 2-Photon-Amplitude
- Experiments at Forward- and Backward angles