

Two-photon exchange: Experimental Overview

"How to turn an $O(\alpha_{\rm EM})$ effect into a 200% error"

John Arrington Argonne National Lab

Introduction

Rosenbluth measurements (LT): G_E , G_M Polarization transfer (PT): G_E/G_M

Two-photon exchange corrections

Evidence for two-photon exchange Uncertainties in the TPE, form factors

Future experiments

e-dependence of TPE effects: Cross section and polarization transfer Size of TPE effects: e+/e- comparisons, PT/L-T comparisons

Workshop on Nucleon Form Factors Frascati, 12 October, 2005

 senbluth formula: single-photon exchange (Born a) senbluth formula: single-photon exchange (Born a) method (Born a)<th>Born Rosenbluth formula: single-photon exchange (Born a) P'</th><th>oproximation)</th><th>r r), and (g)])] diagrams nd (f)] nn rator (1/q²) sator (1/q²)</th><th>Drell and S.Fubin</th>	Born Rosenbluth formula: single-photon exchange (Born a) P'	oproximation)	r r), and (g)])] diagrams nd (f)] nn rator (1/q ²) sator (1/q ²)	Drell and S.Fubin
senbluth formula: single-photon senbluth formula: single-photon (c) (d) Meisner, N Prescript higher-on and inels (c) (d) Two-photo inels (c) (h) Neglect Simplifi Simplifi (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	Born Rosenbluth formula: single-photon Born Rosenbluth formula: single-photon (b) (c) (d) Prescript higher-o and inels (f) (g) (h) (g) (h) Neglect Simplifi Neglect R 102, 537 (1956) ; S.D.Drell and M.Ruderman, PR 1	exchange (Born a	Io and Tsai, others ions to correct fo rder elastic [(a), (b stic [(c), (d), and (h n exchange [(e) a n exchange [(e) a n imited way: oton approximatic oton approximatic ied photon propag	ions 06, 561 (1957) ; S.D. reenhut PR 184 186
senbluth formula (g) (g)	Born Rosenbluth formula p' Rosenbluth formula p' (b) (c) (d) $(d)(f)$ (f) (g) (f) $(f$	single-photon (Meisner, M Prescript higher-or and inela and inela Soft pho Simplifi Neglects	d ~1% correcti M.Ruderman, PR 10 41 (1969) · G K G ³
	Born Born Ro (f) (f) $(f$	senbluth formula	$2m\phi = m\phi =$ $2m\phi = m\phi =$	erally indicated (6); S.D.Drell and I muchell PR 180, 15

k

Linearity of Rosenbluth plot taken as additional evidence of small corrections

Studies of two-photon effects ('50s and '60s)

Definitive test: Positron-proton scattering vs. electron-proton scattering

$$\mathbf{R} \equiv \frac{\mathbf{\sigma}_{e+}}{\mathbf{\sigma}_{e-}} = \frac{(\mathbf{A}_{1Y} + \mathbf{A}_{2Y})^2}{(\mathbf{A}_{1Y} - \mathbf{A}_{2Y})^2} \approx 1 + 4 \operatorname{Re}(\mathbf{A}_{2Y}/\mathbf{A}_{1Y})$$

$$\mathbf{R} \equiv \frac{\mathbf{\sigma}_{e+}}{(\mathbf{\sigma}_{e+} - \mathbf{A}_{2Y})^2} \approx 1 + 4 \operatorname{Re}(\mathbf{A}_{2Y}/\mathbf{A}_{1Y})$$

$$\underbrace{\mathsf{e+}}_{\mathbf{C}} = 1.003 + -0.005$$

$$\lim_{add refs therein} 1.12 + 42(1968)$$

$$b_{e+} = 1.0$$

$$\mathbf{R} = 1.003 + -0.005$$

$$b_{e+} = 1.003 + -0.005$$

$$b_{e+} = 1.003 + -0.006$$

$$b_{e+} = 0.933 + -0.006$$

$$b_{e+} = 0.006$$

However: Low luminosity of secondary $e+/\mu$ beams meant that precise limits were only available for low Q² and/or small scattering angles

Q²

proton target, e struck proton	Polarization along q Polarization perpendicular to a (in the scattering plane)	Polarization normal to scattering plane N. Dombey, Rev. Mod. Phys. 41, 236 (1969)	· · · · · · · · · · · · · · · · · · ·
Jse polarized electron beam, unpolarized neasure the polarization transferred to th	$\mathbf{L} = \mathbf{M}_{\mathbf{p}}^{1} (\mathbf{E} + \mathbf{E}^{*}) \int \tau (1 + \tau) \mathbf{G}_{\mathbf{M}}^{2} \tan^{2}(\theta_{e}/2)$ $\mathbf{T} = 2 \int \tau (1 + \tau) \mathbf{G}_{\mathbf{E}} \mathbf{G}_{\mathbf{M}} \tan(\theta_{e}/2)$	0 = 2	$G_{\rm E}$ $P_{\rm T}$ (E + E') tan($\theta_{\rm e}/2$)

 G_E/G_M from Polarization Transfer

$$\swarrow \left(\frac{G_E}{G_M} = -\frac{P_T}{P_L} \frac{(E+E') \tan(\theta_e/2)}{2M_p} \right)$$

 G_E/G_M goes like *ratio* of two components

- --> insensitive to absolute polarization, analyzing power
 - --> less sensitive to radiative corrections

Comparison of different electron polarizations --> cancellation of false asymmetries Also useful for neutron (where $G_E \ll G_M$, so L-T very difficult)

$G_{\rm E}/G_{\rm M}$ from Polarization Transfer

Surprising result: $\mu_p G_E \neq G_M$ at large Q^2

- -Renewed interest in nucleon form factors, nucleon structure
- -New examination of long-standing pQCD predictions
- -Highlighted the role of relativity, angular momentum
- -Generated interest outside of the field

Articles in Science News, Physics Today, New York Times, USA Today, etc...

Two-photon exchange corrections

However, still need to be careful when choosing form factors as input in data analysis If this were the whole story, we would be done: L-T would give G_M, PT gives G_E

Two-photon exchange corrections

However, still need to be careful when choosing form factors as input in data analysis If this were the whole story, we would be done: L-T would give G_M , PT gives G_E

There are still issues to be answered

- What about the constraints ($\sim 1\%$) from positron-electron comparisons? TPE effects on *polarization transfer*??
 - TPE effects on G_M ?
- TPE effects on other measurements?

comparisons?	003+/-0.005 993+/-0.006	because of low luminosities	For $Q^2 > 1.3$, positron data <i>only set limits for</i> $\varepsilon \equiv I$	Limited data at low ε shows evidence of ε -dependent TPE	0)4)	so effect on G _M cannot be ignored
Limits from positron-electron	Data indicated very small effects: $\langle R \rangle_{e+/e-} = 1.$	Problem: Data limited to low Q^2 or small θ ($\epsilon > 0.7$)	$\left\langle \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\mathbf{B}_{\mathbf{c}} = \mathbf{Q}_{\mathbf{c}+\mathbf{b}}^{\mathbf{c}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NOTE: TPE effects appear to be largest at low ε , ε

Impact of the discrepancy on other measurements

Some cases need form factors to givecross section (including TPE)

*Experiment normalizations

*Cross sections as input to analysis, e.g. $A(e,e^{\circ}p)$ *D. Dutta et al.*, *PRC* 68:064603(2003) Rosenbluth form factors —> $S_{L} \equiv S_{T}$

Polarization transfer form factors

---> $S_{\rm L}$ ~ 60% larger than $S_{\rm T}$

Not always clear if you need the true form factors, the elastic cross section, or something in between *Extraction of weak/axial form factors: v-N or PV e-N *H.Budd*, *A.Bodek*, *JA*, *hep-ex/0308005*

*Calculations using the form factors (e.g. Bethe-Heitler)

 G_{E} from PT) is never correct, and will almost always give the largest error A *mixture* of form factors (G_M from LT,

Recent (but slightly out of date) calculations

P. Blunden, W. Melnitchouk, and J. Tjon, PRL 91 142304 (2003)

-Improved calculation of box diagrams, (unexcited intermediate state only)

Chen, Afanasev, Brodsky, Carlson, Vanderhaeghen: PRL 93 122301 (2004)

Consistent with e+/e- ratios and observed form factor discrepancy

Generalized formalism for elastic scattering beyond Born approximation Other relevant works: P.A.M. Guichon and M. Vanderhaeghen, PRL 91, 142302 (2003)

Model-independent properties, connection of time-like and space-like regimes E. Tomasi-Gustafsson, F. Lacroix, C. Duterte, G.I. Gakh, EPJ A24 (2005) M. Rekalo and E. Tomasi-Gustafsson, EPJ A22, (2004);

pendent analysis	P.A.M.Guichon and M. Vanderhaeghen, PRL 91, 142303 (2003)	/G _M as extracted in one-photon formalism <i>uming</i> e- <i>independent ampltudes</i> invenient, but not necessary)	Q ² = 2.5 GeV ²			G _E /G _M from	0.4 0.6 0.8 1.0
n corrections: Model-ind	$_{\Xi}(\epsilon,Q^{2}),\ \widetilde{G}_{M}(\epsilon,Q^{2}),\ Y_{2\gamma}(\epsilon,Q^{2})$	$\begin{split} & -2\epsilon/(1+\epsilon)\widetilde{G}_{\rm E}/\widetilde{G}_{\rm M}) \; Y_{2\gamma} \begin{array}{l} R=G_{\rm I} \\ (\tau+\widetilde{G}_{\rm E}/\widetilde{G}_{\rm M}) \; Y_{2\gamma} & as \\ \frac{J_{\rm E}^2}{J_{\rm M}^2} \; \frac{\Delta G_{\rm E}}{G_{\rm E}} + 2\epsilon(\tau+G_{\rm E}/G_{\rm M}) \; Y_{2\gamma} \end{split} $.0165 [$\Delta G_{\rm E}(\varepsilon, Q^2)$.0160	$\Delta G_M(\epsilon, Q^2)$ $Y_{2\gamma}(\epsilon, Q^2)$ b ^R .0155	.0150	$\begin{array}{c} \text{contribution} \\ 0.045 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$
Two-photo	Three amplitudes: \widetilde{G}_{I}	$\begin{split} R_{poltrans} &= (\widetilde{G}_{E}/\widetilde{G}_{M}) + (1) \\ R_{Rosen}^{2} &= (\widetilde{G}_{E}/\widetilde{G}_{M})^{2} + 2 (1) \\ \frac{\Delta \sigma_{R}}{G^{2}} \sim & 2\tau \frac{\Delta G_{M}}{G_{M}} + 2\epsilon \frac{G}{G} \\ \end{split}$		$\widetilde{G}_{E}(\epsilon,Q^{2}) = G_{E}(Q^{2}) +$	$\widetilde{G}_{M}(\epsilon,Q^{2}) = G_{M}(Q^{2}) + $ $Y_{2\gamma}(\epsilon,Q^{2}) = 0 + $	Born	

ω

ton corrections: Model-independent analysis	$\widetilde{\mathbf{G}}_{\mathrm{E}}(\epsilon,\mathbf{Q}^{2}),\ \widetilde{\mathbf{G}}_{\mathrm{M}}(\epsilon,\mathbf{Q}^{2}),\ Y_{2\gamma}(\epsilon,\mathbf{Q}^{2})$ P.A.M. Guichon and M. Vanderhaeghen, PRL 91, 142303 (2003)	$\begin{array}{ll} - (1-2\epsilon/(1+\epsilon)\widetilde{G}_{\rm E}/\widetilde{G}_{\rm M}) \; Y_{2\gamma} & R = G_{\rm E}/G_{\rm M} \; {\rm as \; extracted \; in \; one-photon \; formalism} \\ 2 \; (\tau + \widetilde{G}_{\rm E}/\widetilde{G}_{\rm M}) \; Y_{2\gamma} & \end{array}$	$ \begin{array}{c c} \mathbb{C}_{\mathbb{N}}^{2} & \widehat{G_{\mathbb{R}}} \\ \mathbb{C}_{\mathbb{N}}^{2} & \mathbb{C}_{\mathbb{R}} \\ & & & & \\ & & & \\ & & & & \\ & & & &$	$\begin{array}{c} \text{.0165} \\ \text{Iy suppressed} \end{array} \begin{array}{c} \text{.0165} \\ \text{.0161:} \\ \text{.0161:} \\ \text{.0161:} \\ \text{.0163} \\ \text{.0161:} \\ \text{.0163} \\ \text{.0163} \\ \text{.0165} $.0160 +	ο ^R .0155	.0150 - G _E /G _M from	.0145 [0.0 0.2 0.4 0.6 0.8 1.0	ω
Two-photon corr	Three amplitudes: $\widetilde{G}_{E}(\epsilon,Q^{2})$	$\begin{split} \mathbf{R}_{\text{poltrans}} &= (\widetilde{\mathbf{G}}_{\text{E}}/\widetilde{\mathbf{G}}_{\text{M}}) + (1-2\epsilon/(1+2\epsilon)) \\ \mathbf{R}_{\text{Rosen}}^2 &= (\widetilde{\mathbf{G}}_{\text{E}}/\widetilde{\mathbf{G}}_{\text{M}})^2 + 2(\tau+\widetilde{\mathbf{G}}_{\text{E}}/\widetilde{\mathbf{G}}_{\text{E}}) \end{split}$	$\frac{\Delta \sigma_R}{G_M} \sim 2\tau \frac{\Delta G_M}{G_M} + 2\epsilon \frac{G_E^2}{G_M^2} \frac{\Delta G_R}{G_M}$	ΔG_E term is strongly suppre-						

Two-photon exchange corrections to G_E , G_M

Good news:

Discrepancy can be explained with small two-photon amplitudes (2-4%)

These amplitudes also explain the (very limited) low ε e+/e- data

<u>Bad news:</u>

Large corrections

Up to 200% for G_E (Rosenbluth) Up to 30% for G_E (polarization) 3-5% for G_M Large uncertainties, even neglecting uncertainty in ɛ dependence
$$\begin{split} \delta G_{\rm M}^{\rm TPE} & \equiv 1.0\text{-}1.5\% \\ \delta G_{\rm E}^{\rm TPE} & \equiv 5\% \text{ (low } Q^2\text{) } 15\% \text{ (high } Q^2\text{)} \\ As large or larger than the \end{split}$$

experimental uncertainties

Additional uncertainties from *ɛ*-dependence

Nonlinearity leads to uncertainty in extrapolation to $\varepsilon=0$, extraction of G_M

 $\delta G_M^{TPE} = 3.0\%$ (best SLAC limit) $\delta G_M^{TPE} = 1.1\%$ (best JLab limit) Correction to polarization transfer (G_E) is *extremely* sensitive to ϵ -dependence

Even the sign depends on ϵ -dependence

Emperical extractions:

 $Y_{2\gamma} = A, \Delta G_M = B$ $Y_{2\gamma} = A + B/\epsilon, \Delta G_M = 0$

(Both yield linear correction to σ_R)

<u>Calculations:</u> Blunden, et al. (PRC-2005) Chen, et al. (PRL-2004)

Present status	The appear to be significant corrections to both G_E (from PT) and G_M (from LT) of <i>is dominant source of uncertainty in both</i> G_E <i>and</i> G_M	$\mathbf{G}_{\mathbf{M}}$: Main uncertainty from <i>size</i> of TPE effect on reduced cross section (~1-1.5%) Additional uncertainty due to possible non-linearities at low ε (~1%)	e+/e- comparisons at small to moderate Q ² , large scattering angle Better Rosenbluth data for precise LT - PT comparisons	G_{E} : Main uncertainty in ϵ -dependence of TPE amplitudes Measure e-dependence of <i>both</i> cross section and Polarization transfer	culations of TPE effects improving very rapidly Better data can help resolve differences between different approaches	Need best possible constraints for e-p scattering to provide reliable calculations for processes where we cannot make measurements [Talks by Afanasev, Melnitchouk, Tomasi-Gustafsson]
	There a	9		6 -	Calcul B	Z

Signatures of two-photon exchange ter	ms: elastic e-p scattering
Real part of TPE amplitudes: Positron-electron comparisons (<i>VEPP, JLab</i>) -Clean extraction of two-photon terms -Map out Q^2 and ϵ dependence of $\Delta \sigma^{TPE}$	Can test TPE explanation Map out TPE for $Q^2 < 1-2$ GeV ²
Precise e-p elastic cross sections (JLab) -E-dependence of cross section Polarization transfer: P ₁ /P _t (JLab) -E-dependence of polarization ratio	Map out TPE for $Q^2 > 1-2 \text{ GeV}^2$
Imaginary part of TPE amplitudes:	
-No direct impact on form factors, but provination for independent constraints on TPE calculation	itzation transfer Γ_N ide additional ons
Already have data from SAMPLE, A4, G0. Approved experiment to measure A _y (targe	More to come [Talk by F. Maas] t single spin asymmetry) from ³ He

"Two-photon exchange and elastic scattering of JA, D.	f electrons/positrc Nikolenko, spokesper	ons on the sons, nucl-eo	proton" :⁄0408020
		<q<sup>2></q<sup>	e+/e- slope
1.05 1	World's e+/e- data Novosibirsk e+/e-	0.4 GeV ² 1.6 GeV ²	5.8 +/- 1.8% 10.4 +/- 2.2%
v = X		Pro	jected slope based FPE amplitudes n global extraction
$0.85 \begin{bmatrix} 0.85 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.8 \\ 1.0 \\ 0.8 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.8 \\ 0.$			
Precise comparison of positron-proton and ele	ectron-proton scat	tering at n	noderate Q ²
 Confirm TPE as source of the discrepan Provide best measurement on size of TF 	ncy PE effects at 1-2 C	JeV ²	
Would also like to have positron data over ran	ige in Q ² , and with	h complete	e e coverage

JLab E05-017 (Hall C): Improved Rosenbluth data

Proton detection can give factor of 2-3 improvement over world's L-T data on $G_{\rm E}/G_{\rm M}$ (as demonstrated by E01-001)

(as definentiated by EU1-UU1) I.A.Qattan, et al., PRL 94, 142301 (2005)

At lower Q^2 , positron-electron comparisons will determine the size of $\Delta \sigma^{TPE}$

at or below the experimental uncertainties (if E-dependence known) Reduce TPE uncertainties on G_M by factor of 2-3 for all Q^2 ,

Final step: better knowledge of ϵ -dependence of amplitudes

ϵ -dependence at lower (and higher) O^2

At low-to-moderate Q^2 , we can't separate effect of G_E from linear part of TPE Rosenbluth data *only constrains non-linearity* in $\Delta \sigma^{\text{TPE}}$ At lower O^2 values, e+/e- comparisons can yield a clean measure of the ϵ -dependence providing both *linear and non-linear components*

clean as in the e+/e- comparison

0.6 0.6 -0.008 ± 0.044 ω 0.000 ± 0.105 0.000 ± 0.020 0.4 0.4 JLab E01-001 JLab E05-017 SLAC NE11 0.2 0.2 P_2 = II || പ് പ് .0140 [___ 0.0 0.0 .0165.0160 .0165 .0150 .0145 .0145 .0135 .0130 .0145 .0170 .0150 .0160 ь^к .0155 .0155 ь^к .0150 ь^к .0140 E05-017: ϵ dependence of $\Delta \sigma^{\text{TPE}}$ JLab E01-001 \frown P₂ = -0.008 +/- 0.069 SLAC NE11 \longrightarrow P₂ = 0.000 +/- 0.105 $\delta\sigma$ (s -> 0) = 3.0% JLab E05-017 \longrightarrow P₂ = ??? +/- 0.020 $\delta\sigma$ (s -> 0) = 0.4% $\delta\sigma (\varepsilon \rightarrow 0) = I.I\%$ would be ~5-7 sigma for this measurement Can't separate G_E from TPE terms, but Fit to $\sigma_{R} = P_0 (1 + P_1 \varepsilon + P_2 \varepsilon^2)$ **Calculations predict non-linearity that** can isolate (or limit) non-linear part $(1.12, 2.56 \, \text{GeV}^2)$ $(2.5 \, \text{GeV}^2)$ (2.64 GeV^2)

E04-019 (Hall C): ϵ dependence of polarization transfer

but $\Delta G_M=0$, $Y_{2\gamma} = A + B/\epsilon$ also yields linear effect on cross section. ε-independent TPE amplitudes yield linear effect on cross section,

These are *indistinguishible* in the cross section, but yield different corrections to polarization transfer

E04-019: Measure ɛ dependence of *polarization transfer* result

Very different sensitivity to ϵ -dependence of $Y_{2\gamma}$, ΔG_M

Two-photon corrections: Future plans	t term (direct connection to form factors):	<i>monstrate</i> that two-photon exchange is responsible Experimental evidence is indirect (discrepancy) or weak (e+/e-)	ore data to <i>extract TPE corrections to</i> G_E , G_M and to <i>constrain calculations</i> Better constraints on ε -dependence of the amplitudes More precise positron-electron comparisons	More precise data for Rosenbluth-Polarization comparisons	ger term (test models, study two-photon physics/GPDs):	orn-forbidden observables in p(e,e'p) - imaginary part of the TPE amplitudes - Beam single-spin asymmetries (SAMPLE, A4, G0) - Normal polarization transfer, normal target spin asymmetries	easurements to constrain TPE effects in other reactions - Elastic form factors for neutron or light nuclei	- Other exclusive processes (e.g. N $\longrightarrow \Delta$ form factors) - Indirect impact due to uncertainty in form factors (e.g. extracting PV form factors)	- Experimentally, very little can be done without positron beams Need well tested, well constrained calculations
Two-photon correc	Short term (direct connection to f	<i>Demonstrate</i> that two-photon exchan Experimental evidence is indirect	More data to <i>extract TPE correction</i> . Better constraints on ε-dependend More precise positron-electron co	More precise data for Rosenbluth	Longer term (test models, study t	Born-forbidden observables in p(e,e - Beam single-spin asymmetries (- Normal polarization transfer, no	Measurements to constrain TPE effe - Elastic form factors for neutron	- Other exclusive processes (e.g.] - Indirect impact due to uncertain	

Positron beams?
A high-quality positron beam would allow test of TPE effects in other reactions
1999: Workshop on positron beams at Jefferson Lab2004: Informal "micro-workshop" to discuss new options, new physicsMuch of the physics program could be done with 100-200nA beams, \$5-10MMany TPE studies, Coulomb distortion, etc
Certain options require more: 1-2 μA, \$30M DVCS, Time-reversal invariance?
Late 2005: Want to reexamine options for positron sources, start setting parameters Do we need electron/positron reversal in a day, a week, or a month? What current is good enough? What other measurments can we make? DICS [see Bogdan's talk]
Need to start thinking about what we can do and what we need to do it!

<i>Neutron form factors:</i> G_E^n Simple model: Two magnetic scatterings> TPE is ~50% of e-p $[(\mu_n/\mu_p)^2]$ For $Q^2 \leq 1$ GeV ² , G_E^n is smaller than G_E^p by a factor of three or more, yielding a <i>larger fractional correction to</i> G_E^n Important to know if e-p corrections are 1% or 10% (~10% in global analysis)	Weak form factors:e.g. HAPPEXK. Aniol, et al., PRC69:065501 (2004)Global analysis: $\Delta G_E^{2\gamma} = 7.5\%$ at $Q^2 = 0.5 \text{ GeV}^2$ Image:1.2 ppm change in physics asymmetry (twice the assumed systematic)Two-photon effects on G_M^p , G_E^n , G_M^n will yield additional correctionsImage:Imag	Deuteron form factors: $B(Q^2)$ E91-026: A and B extracted for $0.7 < Q^2 < 1.3$, $\theta_{MAX} = 145^\circ$ R. Suleiman, Ph.D. Thesis Expect larger TPE for deuteron, but if we assume same $\Delta \sigma_{22}/\sigma$ as for proton: $\Rightarrow \Delta B/B = 30\%$ at $Q^2 = 1.3$ Roughly <u>twice</u> the experimental uncertainties Different form factors (G _M , G _Q , and G _C) are combinations of A, B, and t_{20} Probably even worse for ³ He - can't isolate G _E	There are many reactions where TPE might be important (>1-2 σ), but often a rough understanding of TPE (30-50%) will be enough
	Neutron form factors: G_E^n Simple model: Two magnetic scatterings> TPE is ~50% of e-p $[(\mu_n/\mu_p)^2]$ For $Q^2 \leq 1 \text{ GeV}^2$, G_E^n is smaller than G_E^n by a factor of three or more, yielding a <i>larger fractional correction to</i> G_E^n \longrightarrow Important to know if e-p corrections are 1% or 10% (~10% in global analysis) Frontually need a well tested model for e-p which can then be analised to e-p	 Neutron form factors: Gⁿ_E Simple model: Two magnetic scatterings> TPE is ~50% of e-p [(μ_u/μ_p)²] For Q² ≤ 1 GeV², Gⁿ_E is smaller than G^p_E by a factor of three or more, yielding a <i>larger fractional correction Gⁿ_E</i> Important to know if e-p corrections are 1% or 10% (~10% in global analysis) Eventually, need a well tested model for e-p which can then be applied to e-n Weak form factors: e.g. HAPPEX K. Aniol, et al., PRC69:065501 (2004) Weak form factors: e.g. HAPPEX K. Aniol, et al., PRC69:065501 (2004) Global analysis: ΔG^{2N}_E = 7.5% at Q²=0.5 GeV² L.2 ppm change in physics asymmetry (twice the assumed systematic) Two-photon effects on G^N_M, Gⁿ_E, will yield additional corrections for the oreastimate - needs to be redonel 	Neutron form factors: $G_{\rm E}^{n}$ Simple model: Two magnetic scatterings> TPE is ~50% of e-p [($\mu_{\rm u}/\mu_{\rm p}^{0}$] For $Q^{2} \leq 1$ GeV ² , $G_{\rm E}^{n}$ is smaller than $G_{\rm E}^{0}$ by a factor of three or more, yielding a larger fractional corrections are 1% or 10% (~10% in global analysis) Eventually, need a well tested model for e-p which can then be applied to e-n Weak form factors: e.g. HAPEX x <i>taiol. et al.</i> , <i>RECO</i> 9:05501 (2004) Global analysis: $\Delta G_{\rm E}^{2\gamma} = 7.5\%$ at $Q^{2}=0.5$ GeV ² \Rightarrow 1.2 ppm change in physics asymmetry (twice the assumed systematic) Two-photon effects on $G_{\rm N}^{0}$, $G_{\rm B}^{0}$, $G_{\rm M}^{0}$ will yield additional corrections NOTE: The HAPEX example is probably a factor of two overestimate - needs to be redone] D = -1.2 ppm change in physics asymmetry (twice the assumed systematic) Two-photon effects on $G_{\rm N}^{0}$, $G_{\rm M}^{0}$ will yield additional corrections for $D = 1.2$ ppm change in physics asymmetry (twice the assumed systematic) Two-photon effects on $G_{\rm N}^{0}$, $G_{\rm M}^{0}$ will yield additional corrections for $D = -1.2$ ppm change in physics asymmetry (twice the assumed systematic) Two-photon effects on $G_{\rm N}^{0}$, $G_{\rm M}^{0}$ will yield additional corrections for $D = -1.2$ ppm change is probably a factor of two overestimate - needs to be redone] D = -1.2 ppm change is probably a factor of two overestimate for the corrections in the tracter of $O = -2.3$ Roughly fixied the experimental uncertainties Different form factors ($G_{\rm M}$, $G_{\rm O}$, and $G_{\rm O}$) are combinations of A, B, and $t_{\rm O}$ Probably even worse for ³ He - can't isolate $G_{\rm E}$

Coulomb distortion

Other higher-order processes can also contribute - not just two-photon exchange

Soft multi-photon exchange (Coulomb distortion) also enters at order α

Effects are generally small, but do have a significant ɛ-dependence JA and I. Sick, PRC 70, 028203(2004)

*Only explains a small part of the discrepancy above 3-4 GeV²

*Can explain up to 30-40% of the discrepancy for $Q^2 \equiv 1 \text{ GeV}^2$)

*Explains much (most?) of the low-Q² positron/electron ratio

Uses full e⁻p cross section and polarization data sets and constraint from e⁺p data

Assumes e-independent TPE amplitudes JA, PRC 71, 015202 (2005)

 $Y_{2\gamma}$ extracted from the difference between R_{L-T} and R_{Pol} Extract $Y_{2\gamma}$ with ~50-100% uncertainty

 $\begin{array}{l} \Delta G_{M} \mbox{ determined by e+/e-} \\ \mbox{constraint: } \Delta \sigma \cong 0 \mbox{ at large } \epsilon \\ \Delta G_{M}/G_{M} \cong -\epsilon(1+\rho/\tau) \mbox{ } Y_{2\gamma} \mbox{ } (\rho=G_{E}/G_{M}) \end{array}$

Significant corrections to G_E, G_M

TPE corrections *dominate the uncertainty in the form factors*

Extraction limited by quality of present Rosenbluth extractions

Would be easy to resolve with better LT measurements **IF** ε-dependence were known

E04-116 (Hall B): positron- and electron-proton scattering

Use 5% radiator to generate photon beam, dump electron beam into tagger dump.

Put photon beam through 2% converter to generate positrons and electron

Steer positron(electron) beam above(below) photon blocker with a 4-dipole chicane system

Overlapping positron and electron beams incident on hydrogen target

E04-116 (Hall B): positron- and electron-proton scattering

Use 5% radiator to generate photon beam, dump electron beam into tagger dump. Put photon beam through 2% converter to generate positron and electron Steer positron(electron) beam above(below) photon blocker with a 4-dipole chicane systen

Overlapping positron and electron beam incident on hydrogen target

Advantages of Proton Detection

Electron detection: varying ɛ involves large changes in momentum, angle, cross section, etc...

For proton detection, these are much less sensitive to ϵ -Smaller <u>relative</u> uncertainties -Better linearity tests -Better measurements of G_E/G_M

Checks on polarization transfer data

JLab E04-108 (Hall C):Extension to higher Q² (Perdrisat, Brash, Jones, Punjabi)

-Extends data to $Q^2 \equiv 9 \text{ GeV}^2$

-Different spectrometer and recoil polarimeter

-Check on spin-transport and polarimeter systematics

JLab Proposal: G_E/G_M via polarized target asymmetry (Zheng, Calarco, Rondan)

-Q² range and precision identical to existing polarization transfer data -Systematics are compleately different for this technique

Projected results vs. world's data

Normalization uncertainties prevent meaningful linearity limits from *global cross sections* analysis Red points: All published L-T 0.1 separations for Q^2 >0.4 with $\Omega_{-0.0}$ $\delta_{P_2} < 0.8$ (i.e. full scale of plot) $\Omega_{-0.1}$

Combined result:

 $P_2 = 0.029 + / - 0.055$ Averaged over all Q² values Almost no precise data for $\varepsilon < 0.2$

Magenta: E01-001

Projected results vs. world's data

Normalization uncertainties prevent meaningful linearity limits from *global cross sections* analysis

Red points: All published L-T separations for Q^2 >0.4 with $\delta P_2 < 0.8$ (i.e. full scale of plot) \tilde{F}

Combined result: $P_2 = 0.029 + / - 0.055$ Averaged over all Q² values Almost no precise data for $\varepsilon < 0.2$

Magenta: E01-001

Blue points: E05-017

Every points below 4 GeV² has $\delta P_2 < 0.055$ (seven of ten Q² values) Combined result: $\delta P_2 = 0.011$

Much more data at low ε values (down to $\varepsilon=0.05$, 0.08)

Important for extrapolation to $\epsilon=0$, extraction of G_M

Two Q^{2} values will have 12 ϵ points for detailed measurement of ϵ -dependence

Projected results vs. calculations of two-photon effects

Projected results placed on calculations of Chen, *et al.*, Blunden, *et al.*, Afanasev (all scaled to yield 6% linear component)

E05-017 yields $\delta P_2 \equiv 0.02$ at both Q²

Models vary from <u>-0.12 to +0.07</u>

Range of models is ~10x the projected sensitivity

<u>All three</u> models yield 3-6 σ effect at each Q^2

Detailed E-dependence can further constrain models (non-linearity at high vs. low E)

 \rightarrow Extract TPE amplitudes with good precision (20-30%) down to $Q^2 = I \ GeV^2$ Global analysis of Rosenbluth, polarization transfer, and positron data

Currently, can extract TPE amplitudes to ~50-100%, down to $Q^2 = 2 \text{ GeV}^2$

 $\mathbf{G}_{M}(\mathbf{Q}^{2})$ (Rosenbluth) and $\mathbf{G}_{E}(\mathbf{Q}^{2})$ (polarization transfer) Apply two-photon corrections to extracted values of

Physics impact of "small" TPE corrections: other
No data and little theoretical work on effects at lower Q^2 , where the form factors must be known precisely: Analysis of A(e,e'p) measurements (especially L-T separations) $P_{Rev. C68:064603(2003)}^{D.Dutta, et al., Phys.}$ Extraction of parity violating form factors
Example: HAPPEX ($Q^2 \cong 0.5 \text{ GeV}^2$) <i>K. Aniol. et al., PRC69:065501 (2004)</i> Extracted physics asymmetry = 15 ppm, 1 ppm stat. error, 0.6 ppm sys. error Uncertainty due to uncertainty in E-M form factors: 0.6 ppm
Analyses following the approach of Guichon and Vanderhaeghen, P. Guichon and M. Vanderhaeghen, PRL 91:142303 (2003) J. Arrington, PRC71:015202 (2005) yield TPE corrections to G_E that are <i>larger than the assumed uncertainties</i> : TPE change to G_E is 7.5% at $Q^2=0.5 \text{ GeV}^2$
There is a large uncertainty in this correction, which could easily be larger or smaller. The change in G_E yields 1.2 ppm, the other form factors will yield <i>additional corrections</i>

Physics impact of "Small" IPE corrections: neutron form factors
Simple model : TPE is roughly proportional to G_M^2 Assumes TPE mainly from two magnetic interactions J. Arrington and I. Sick, PRC 70:028203 (2004) J. Tjon, priv. communication
Neutron <i>magnetic</i> form factor:
Cross section ~ G_M^2 (at large Q ²), Interference term ~ G_M^3
In the simple model, we expect the <i>fractional</i> TPE effects to be down by roughly $G_M^n/G_M^n \cong \mu_n/\mu_p$, or roughly 2/3 of the proton case (3-7% at large angle)
Most likely not an issue, since few G_M^n data are at large angle
Neutron <i>electric</i> form factor:
Simple model predicts e-n TPE will be half of the e-p correction [factor of $(\mu_n/\mu_p)^2$]
For $Q^2 < 1$ GeV ² , G_E^n is smaller than G_E^p by a factor of three or more, yielding a <i>larger fractional correction to</i> G_E^n
First, we need to know if TPE corrections to e-p polarization transfer are 1% or 10%
Eventually, we need a well tested model for e-n which can then be applied to e-n
ervatury, we need a went restore model for e p winen ean men of appress to e n

Physics impact of "small" TPE corrections: deuteron form factors <u>Simple model</u> : TPE is same as for proton (5-10% e-dependence) (General expectation is that TPE effects will be <i>larger</i> for e-d due to ranid cross section falloff)
$\sigma_{R}(e-d) \sim A(Q^{2}) + \tan^{2}(\theta/2) B(Q^{2})$ In principle, measurements at $\theta=0^{\circ}$ and 180° allow direct separation of A, B In practice, $\theta_{MAX} < 180^{\circ}$ means TPE effects are enhanced in $B(Q^{2})$
E91-026: A and B extracted for $0.7 < Q^2 < 1.3$, $\theta_{MAX} = 145^\circ$ R. Suleiman, Ph.D. Thesis Assuming 6% ε -dependence (based on proton at similar Q ²) $\Rightarrow B(Q^2)$, extracted from L-T separation, has enhanced TPE correction $\Delta B/B = 11\%$ at $Q^2 = 0.7$ Roughly <u>twice</u> the experimental uncertainties 30% at $Q^2 = 1.3$
Different form factors (G_M , G_Q , and G_C) are combinations of A, B, and t_{20} , and certain combinations will be strongly effected by these TPE corrections, especially where there are large cancellations between the measured form factors (e.g. near minima)
TPE effects are probably even worse for ³ He: Expect larger TPE corrections due to rapid falloff of form factors Can never isolate G_E from G_M (same problem as for the proton)