

Physics case

Role of the strange quark in the nucleon structure

- Strange quarks are the lightest non valence quarks of the sea
 - b Excellent candidate to study the dynamics and influence of the sea

- Evidence of the role of the strange quark ?
 - Momentum (Deep inelastic vN scattering)
 Contribution ~ 4 %
 - Mass (σ -term in πN scattering) 0 to 30 % (but SU(3) assumption)
 - Spin (polarized DIS)
 - Δs = 0 to -10 % (but depends on ΔG)

New signal investigated in PV experiments

- Charge and magnetization (elastic electron-nucleon scattering)
- Cover large Q² domain to access different spatial resolution
 - Static properties (μ_s , ρ_s) near Q² = 0

EM and Weak form factors

- Charge and magnetization (current/spin) extended distributions in nucleon (J=1/2)
 - \bullet Expressed with 2 form factors depending only on Q^2
- Elastic scattering of electron probes the nucleon via γ (EM) or Z⁰ (Weak) exchange

Decomposition on quark flavors

EM and Weak form factors

 Quark probed by a coupling to their electrical and weak charges

Flavor	Q_q	$C^{q}{}_{V}$	
u, c, †	2/3	1 - 8/3 $sin^2\theta_W$	
d, s, b	-1/3	-1 + 4/3 $sin^2\theta_W$	

• Neglecting the heaviest quarks (c, b, t) in the flavor decomposition :

$$\boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{(\gamma,\mathsf{N})} = \sum_{\mathsf{q}=\mathsf{u},\mathsf{d},\mathsf{s}} Q_{\mathsf{q}} \, \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{(\mathsf{q},\mathsf{N})} \qquad \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{(\mathsf{Z},\mathsf{N})} = \sum_{\mathsf{q}=\mathsf{u},\mathsf{d},\mathsf{s}} C_{V}^{q} \, \, \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{(\mathsf{q},\mathsf{N})}$$

• Charge symmetry : neutron \leftrightarrow proton (valid at the 1% level)

$$\stackrel{\text{\tiny (1)}}{\hookrightarrow} \quad \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{\mathsf{S}} = (1 - 4\sin^2\theta_w) \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{\gamma,\mathsf{p}} - \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{\gamma,\mathsf{n}} - \boldsymbol{\mathcal{G}}_{\mathsf{E},\mathsf{M}}^{Z,\mathsf{p}}$$

Strange quark form factors determination

- 4 EM Form Factors are measured (E,M on n,p) in the 0-1 GeV² domain
 - Need good precision on EM form factor (G^{n}_{E}) and 2 photon effects understanding
- Proton weak form factors (E, M) are measured in PV experiments

Parity Violation experiments

Weak form factors measurements

- \bullet EM and Weak contributions but $M_Z \lll M_\gamma$ in our energy domain
 - Must get rid of the dominant M_{γ}^{2} term
 - Parity violation (PV) in polarized elastic electrons scattering on unpolarized proton target

PV Asymmetry

$$\boldsymbol{A}_{\mathsf{PV}} \equiv \frac{\boldsymbol{\sigma}_{+} - \boldsymbol{\sigma}_{-}}{\boldsymbol{\sigma}_{+} + \boldsymbol{\sigma}_{-}} \approx \frac{\Re e \left(M^{\gamma} . M^{Z} \right)}{\left| M^{\gamma} \right|^{2}}$$

- Systematic errors (normalization) cancel in the ratio
- A_{PV} : 1 ppm to 50 ppm (part per million : 10⁻⁶) for Q² = 0.1 1. (GeV/c)²
- $A_{PV} = A_0 (s = 0) + A_s$

 \clubsuit Need to reach a precision of a few % (stat. + syst.) on A_{PV} !

Weak form factors determination

$$\boldsymbol{A}_{PV} = -\frac{\boldsymbol{G}_{F}\boldsymbol{Q}^{2}}{4\sqrt{2}\pi\alpha} \frac{\varepsilon \,\boldsymbol{G}_{E}^{(\gamma,p)} \,\boldsymbol{G}_{E}^{(Z,p)} + \tau \,\boldsymbol{G}_{M}^{(\gamma,p)} \,\boldsymbol{G}_{M}^{(Z,p)} - \left(1 - 4\sin^{2}\theta_{W}\right)\varepsilon'\boldsymbol{G}_{M}^{(\gamma,p)} \,\boldsymbol{G}_{A}^{e}}{\varepsilon \left(\boldsymbol{G}_{E}^{(\gamma,p)}\right)^{2} + \tau \left(\boldsymbol{G}_{M}^{(\gamma,p)}\right)^{2}}$$

Separation of weak form factors E, M, A (at each Q^2)

 \mathbf{b} Rosenbluth separation

- H : Forward angle measurement ($\epsilon' \rightarrow 0$) E + M
- H : Backward angle measurement ($\epsilon \rightarrow 0$) M + A
- ♦ Isospin/spin of targets

D(n + p): Back angle measurement A + M

⁴He (J= 0, T= 0) : Forward angle E

Extraction of strange quarks contribution

- Strange quarks and vector form factors (E, M) after subtraction of $A_0(s=0)$
 - EM form factors and correction of higher order EW terms
- Axial current in the nucleon also accessible (no flavor separation)

The experimental program

Worldwide effort since 10 years

- 4 experiments : SAMPLE, HAPPEX, PVA4 et G⁰
- 3 sites : MIT-Bates (Boston, USA), JLab (VA, USA), MAMI (Mainz, Germany)

	SAMPLE (Bates) 1998-2002	HAPPEX (Jlab) 1998-2002	HAPPEX II 2004-2005	PVA4 (MAMI) 2002-04 + 06-08	G ⁰ (JLab) 2003-04 + 06-08
$Q^2 (GeV/c)^2$	0.04, 0.1	0.48	0.1	0.1, 0.23	0.12 - 1.0
Angle	В	F	F	F/B	F/B
Target	H,D	Н	H, ⁴He	Н	H, D
Separation	$G_{M}^{s}, G_{A}^{(p+n)}$	G _E ^s + 0.4 G _M ^s	G _E s, G _M s	G _E s, G _M s	$G_e^s, G_M^s, G_A^{(p+n)}$

Prospects and coordination

- Completion of HAPPEX II in 2005. New proposal of Happex III at 0.6-0.7 GeV²
- 2 New measurement in GO Backward (likely 0.23 and 0.6-0.7) in 2006
- A4 program running at Backward angle in 2006 (0.23 GeV²)

PV experiments @ Jefferson Laboratory

CEBAF

- Recirculation arcs (N= 1-5 pass)
 - 2 LINAC of 0.6 GeV max
- RF superconducting Cavities
- Beam properties
 - CW beam, 200 μ A (total)
 - \bullet Polarization 75 \rightarrow 85 %
 - 6 GeV (with 8 MV/m)
 - Upgrade to 12 GeV (> 2010)
- 3 Halls A, B, C

PV experiments

• Happex in Hall A and G⁰ in Hall C

Beam : The key element

Polarized electron source at JLab

- Photo emission from strained GaAs crystal
 - Laser light with circular polarization using optoelectronic device (Pockel cells)
 - High polarization : 75% for GO (Happex II: 85% with supperlattice)
- Fast Helicity reversal (33 ms)
- Reversal of polarization with sign of the voltage applied to the Pockel cells
- Feedback system
 - Minimize false asymmetries due to changes in beam properties

Additional challenge for G^0

- 40 µA beam current
 - 32 ns pulse spacing for ToF spectra
 - 🏷 Higher bunch charge (x16)

Beam Parameters	Achieved in G ^o	False asymmetry
Charge asym.	-0.14 ± 0.32 ppm	10 ⁻⁸
X-Y position dif.	3-4 ± 4 nm	10 ⁻⁹
X-Y angle dif.	1-1.5 ± 1 nrad	10 ⁻⁹
Energy dif.	29 ± 4 eV	10 ⁻⁹

Focal Plane Detectors

Specific features

- Detection of recoil proton : $\theta_{P}\approx 70^{\circ} \leftrightarrow \theta_{e}$ = 7°
 - Large Q^2 coverage = 0.1 1 (GeV/c)²
 - Single measurement at $E_{e_{-}} = 3 \text{ GeV}$
- Counting experiment in Focal Plane Detectors
 - Scintillator pairs + PMTs
 - Segmentation : Rates/detector < 2 MHz
 - Q^2 uniquely selected with # of FPD fired

Identification of elastic protons

- ToF spectra
 - Special 32 ns beam time structure
 - Histograms built for each Macro-pulse (33 ms)
 - Corrections of dead time and non-linearity

GO Background analysis

Subtraction of background

- Inelastic process in target cell, beam leakage ...
- Fit of sum of elastic and inelastic contributions
- Dilution factor (rates) and asymmetries
- Many tests performed
 - Dependences with cuts, fitting functions (polynomial, Fermi-Dirac ...)
 - \bullet Correlations between fit parameters and χ^2/N
 - 🏷 Estimate of systematic errors
- Variation of background shape
- Conservatives ranges retained for errors
- Coherence of results from 4 PhD students
 - 8 Octants (4 NA and 4 French)

Quality checks

Search for experimental false asymmetries

- Distribution of measured asymmetries
 - Quartet/quartet (sequence of 4 helicity states)
 - Signature of experimental asymmetries
 - $\boldsymbol{\boldsymbol{\boldsymbol{\forall}}}$ Deviation to statistical (Gaussian) distribution
 - Width must be compatible with Luminosity

- $\lambda/2$ wave plate (mechanical insertion)
- Polarization reversal \rightarrow sign of asymmetries $\Leftrightarrow A_{PV}$ (IN) = - A_{PV} (OUT)

G⁰ Experimental Asymmetries

- Asymmetry without strangeness : $A_{NVS} = A_0(G_{E,M} = 0)$
- EM Form Factors : Kelly PRC 70 (2004) 068202
- Errors : Statistical (inner) and point to point + Stat (outer)

<u>Theories</u> 1-Leinweber *et al.* PRL **94** (05) 212001 2-Lyubovitskij, *et al.* PRC **66** (02) 055204 3-Lewis, *et al.* PRD **67** (03) 013003 4-Silva, *et al.* PRD **65** (01) 014016 $\frac{K. Aniol et al.,}{nucl-exp/0506011} + G^{\circ} data$ $G_{E}^{s} = -0.013 \pm 0.028$ $G_{M}^{s} = +0.62 \pm 0.31$ $\pm 0.62 (2\sigma)$ $\Leftrightarrow \text{ contribution} \approx 10\% \text{ in } \mu_{p}$ (factor 1/3 for s quarks)

model

Large positive μ_s value contradicts most predictions

Some conclusions

- Good agreement with HAPPEX data measured at similar kinematics
- \rightarrow A null strange quark contribution ($G_{E}^{s} = G_{M}^{s} = 0$) is rejected at 90 % CL

Speculation ...

Strange Form factors extraction

- Fit of the world data set (H, He) with sum of 2 strange Form Factors
 - Use parameterization for their Q^2 dependence (G^p_M and G^n_E types)

From the fit

- Large positive value for G^s_M (0)
- E and M contributions have opposite sign
- Sharp Q² dependence
- Need additional data (separation) to come to any firm conclusion

GO Backward angle configuration

G0 proposed backward measurement at $Q^2 = 0.23$, 0.47 and 0.8 (GeV/c)²

- Detection of the scattered electrons (θ_e ~ 110°)
- Small Q² acceptance : different beam energies required
- Measurement on both LH_2 and LD_2 targets
- PAC 28 : recommends a common strategy with HAPPEX III

Set-up

- \bullet Standard 2 ns beam structure, 80 μA
- Turn-around of the magnet
- Add Cryostat Exit Detectors (CED)
 to separate elastic and inelastic electrons
- Cherenkov detector for pion rejection (required mostly for LD₂ target)

E _e (MeV)	Q ² (GeV ²)	
360	0.23	
585	0.47	
799	0.8	

The axial part in e-N scattering : G^{e}_{A}

Unknown in the determination of $G^{s}_{E,M}$ (but also a physics case)

- Tree-level
 - Neutron β decay, v-scattering
- EW radiative corrections
- Anapole form factor F_A
 - Parity-violating electromagnetic moment
 - Difficult to predict (multi-quarks processes)

 \clubsuit Large uncertainties and need to measure G^{e}_{A}

Program G⁰ (backward angles)

- New measurements combining H/D targets
 - Precise data for G^e_A (T=1) over a large Q² range
 Q² dependence (unknown at present)
- \bullet Data recorded also for N- $\!\Delta$ transition
 - Dependence with $Q^2 (\rightarrow M_A)$

Perspectives for vector form factors

Important improvements from coming measurements

- Higher statistics of Happex II (factor 2-3 on errors) at 0.1 (GeV/c)²
- Separation of the 2 terms (E,M) also at larger Q² (G0 but also A4, Happex III)
 - \bullet Allows for the determination of strange quark contribution over a large Q^2 domain
 - \clubsuit should strongly constrain the G^{s}_{M} dependence, sign of G^{s}_{E}

Summary/Conclusions

Electroweak probes and PV experiments

- Powerful and mature technique (sub-ppm precision level) to study nucleon structure
 - Strange quarks distributions of charge/magnetization

New sets of results

- Contribution of strange quarks at small Q² (close to static properties)
 - 4 different experiments have provided data. Separation of E, M and Axial parts
 - Positive strange magnetic moment (contribution of 5-10% to the proton one)
- \bullet GO Phase I : Large coverage in Q^2
 - Non null strange quark contributions is favored
 - Q² dependence : sum of 2 sizeable form factors (E, M) of opposite sign (speculative)

Perspectives

- New round of measurements to be completed within 2-3 years (HappexII, A4, G^0)
 - Will provide a complete separation of form factors (E, M) at several Q^2
 - Program Need axial form factor and its Q² dependence (from the G⁰ program)
 - Precision/understanding on EM form factors could become a limitation (Happex III)

Along this topic

For a overview of PV experiments and related physics issues see ... Proceedings of the PAVIO4 conference published in European Physics Journal A24 (2005)

And look forward/attend

