

Study of $\gamma \gamma \rightarrow p \bar{p}$ Production at Belle

Chen-Cheng Kuo (Belle Collaboration) National Central University, Chung-Li, Taiwan

Nucleon 05 October 12-14, 2005, Frascati, Italy

Outline

◆ Introduction and Theory
◆ Belle Detector
◆ Event Selection
◆ Cross Sections for γγ → pp̄
◆ Summary

$\frac{\text{Hadron Pair Production from}}{\text{Collisions of two Quasi-Real Photons } (\gamma \gamma \rightarrow h_1 h_2)}$

Definitions and features:

- $W_{\gamma\gamma} \equiv$ invariant mass of h_1, h_2
- $\theta^* \equiv$ c.m. scattering angle of hadrons with respect to $\gamma \gamma$ axis

♦ KEKB:

- ▶ $\sqrt{s_{e^+e^-}} = 10.58 \text{ GeV}$
- world highest luminosity ($\sim 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)
- ▶ abundant and clean $\gamma\gamma$ events up to $W_{\gamma\gamma} \sim 4.5 \text{ GeV}$
- ♦ Test of theoretical predictions:
- ▶ pQCD framework
- ▶ pure quark picture
- quark-diquark model for baryons
- handbag model
- ► QCD sum rules
- ► resonance and pole dynamics

PQCD Framework and Form Factor Models

 General theory of hard exclusive process in QCD:

$$egin{aligned} rac{d\sigma}{dt} \propto s^{2-n_c} f(heta^*) \ (ext{as} \; s o \infty; \; s \equiv W_{\gamma\gamma}^2) \end{aligned}$$

if $n_c = 8$, then $\sigma \propto W_{\gamma\gamma}^{-10}$

[Chernyak et al., JETPL 26 (1977) 594]

[Lepage and Brodsky, PR D22 (1980) 2157] Three-quark picture using proton wave function based on QCD sum rules:

$$rac{d\sigma(\gamma\gamma
ightarrow \mathcal{B}ar{\mathcal{B}})}{d|\cos heta^*|} \propto rac{W_{\gamma\gamma}^{-10}f'(heta^*)}{1\!-\!\cos^2 heta^*}$$

 \sim one order below the experimental cross sections

[Chernyak and Zhitnitsky, NP B246 (1984) 52]

[Farrar et al., NP B259 (1985) 702]

Models for moderately high energy:

 Baryons as quark-diquark systems:

 $rac{d\sigma(\gamma\gamma
ightarrow \mathcal{B}ar{\mathcal{B}})}{d|\cos heta^*|}\propto rac{W_{\gamma\gamma}^{-6}|F_D|^2T'(heta^*)}{1\!-\!\cos^2 heta^*}$

 $F_D \propto ext{diquark form factors}$ (if $F_D
ightarrow 1/s$, then $\sigma \propto W_{\gamma\gamma}^{-10}$)

[Kroll et al., PL B316 (1993) 546]

[Berger et al., EPJ C28 (2003) 249] $\begin{array}{l} \bullet \text{ Handbag contribution} \\ (\gamma \gamma \rightarrow q \bar{q} \rightsquigarrow \mathcal{B} \bar{\mathcal{B}}): \end{array}$

$$egin{aligned} rac{d\sigma(\gamma\gamma o \mathcal{B}ar{\mathcal{B}})}{d|\cos heta^*|} \ \propto rac{|R_V(s)|^2\cos^2 heta^* + R_{eff}^2(s)}{s(1 - \cos^2 heta^*)} \end{aligned}$$

R's: annihilation form factors (if *R*'s $\propto s^{-2}$, then $\sigma \propto W_{\gamma\gamma}^{-10}$)

[Diehl et al., EPJ C26 (2003) 567]

Event Selection Criteria

- Low Multi. (2-track) event selection:
 - $egin{array}{lll} & \sum \left[\left| ec{p}
 ight|
 ight] < 6 \, \, {
 m GeV}/c, \ & \sum \left[E_{
 m cal}
 ight] < 6 \, \, {
 m GeV} \end{array}$
 - $ullet M_{
 m inv} < 4.5 ~{
 m GeV}/c^2, \ M_{
 m miss}^2 > 2 ~{
 m GeV}^2/c^4$
 - $\begin{aligned} & |\vec{p}_t| > 0.35 \,\, \mathrm{GeV}/c, \\ & dr < 1 \,\, \mathrm{cm}, \\ & |dz| < 5 \,\, \mathrm{cm} \,\, \mathrm{for} \,\, \mathrm{each} \,\, \mathrm{track} \end{aligned}$
- Non-exclusive background rejection:
 - p_t^* -balance: $|\vec{p}_{t^+}^* + \vec{p}_{t^-}^*| < 0.2 \,\, {
 m GeV}$

- ♦ $p(\bar{p})$ identification
 (K[±], π[±], μ[±], e[±] rejection):
 - $\frac{|\Delta(dE/dx)|}{\sigma_{dE/dx}} < 4$
 - Normalized Likelihood: $\lambda_{p(\bar{p})} \equiv rac{L_p}{L_p + L_K + L_\pi + L_\mu + L_e}$ > 0.8,

where each $L \equiv e^{-0.5[(rac{\Delta(dE/dx)}{\sigma_{dE/dx}})^2 + (rac{\Delta T(TOF)}{\sigma_T})^2]}$

- $\frac{E_{\text{cal}}}{|\vec{p}|} < 0.9$ (only for *p* candidates)
- $N_{\mathrm{ACC}} < 4$

• p, \bar{p} identification by the Normalized Likelihood:

Chen-Cheng Kuo

Group	Year	$W_{\gamma\gamma}~({ m GeV})$	Events
TASSO	1983	2.0 – 3.1	72
JADE	1986	2.0 – 2.6	57
$\mathrm{TPC}/2\gamma$	1987	2.0 – 2.8	52
ARGUS	1989	2.0 – 2.9	60
CLEO	1994	2.0 - 3.25	484
VENUS	1997	2.2 - 3.3	311
OPAL	2003	2.15 - 3.95	163
L3	2003	2.1 – 4.5	938
Belle	2005	2.025 - 4.0	36094

Determination of Differential Cross Sections

$$rac{d\sigma_{\gamma\gamma o par p}(W_{\gamma\gamma})}{d|\cos heta^*|} = rac{\Delta N \; (1-f)}{arepsilon \; L_{ ext{int}} \; rac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}} \; \Delta W_{\gamma\gamma} \; \Delta |\cos heta^*|}
onumber \ \sigma_{\gamma\gamma o par p}(W_{\gamma\gamma}) = \sum rac{d\sigma_{\gamma\gamma o par p}(W_{\gamma\gamma})}{d|\cos heta^*|} \Delta |\cos heta^*|$$

 $L_{\rm int}$: integrated luminosity (~ 89 fb⁻¹) ε : efficiency: up to 32%

$$rac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}}$$
: luminosity function, defined by
 $\sigma_{e^+e^- o e^+e^- par p}$
 $= \int \sigma_{\gamma\gamma o par p} (W_{\gamma\gamma}) rac{dL_{\gamma\gamma}(W_{\gamma\gamma})}{dW_{\gamma\gamma}} dW_{\gamma\gamma}$

 $\Delta N, \Delta W_{\gamma\gamma}, \Delta |\cos \theta^*|$: number of events in each 2-dimensional bin and the bin widths

f: fraction of residual background in the data

Corrections and Systematic Errors

• Residual non-exclusive $(p\bar{p}\pi^0)$ background subtraction

 $(W_{\gamma\gamma} = 2-4 \text{ GeV})$:

 $f_n = 5 \pm 2\%$ -17 $\pm 8\%$

• Residual $K^+K^$ background subtraction $(W_{\gamma\gamma} = 3.2-4.0 \text{ GeV}):$

 $f_m = 0.8 \pm 0.3\% - \ 7.7 \pm 0.8\%$

• Subtraction of excess due to radiative return J/ψ background $(W_{\gamma\gamma} \sim 3.1 \text{ GeV})$:

a total number of $\sim 31 \pm 8$ events subtracted

◆ Systematic error: Total 7–14%

Source	Sys. error (%)
Integrated luminosity (L_{int})	1.4
Luminosity function $(dL_{\gamma\gamma}/dW_{\gamma\gamma})$	3–5
Trigger efficiency ($\sim 83\%$ – 95%)	5
PID efficiency ($\sim 92\%$ down to 78%)	1–6
MC statistics	1–3
Residual K^+K^- subtraction (f_m)	0–1
Residual $p \bar{p} \pi^0$ subtraction (f_n)	2–12
$ \Sigma p_t^* { m effect}$	2–3
$J/\psi ~{ m subtraction}~(W_{\gamma\gamma}=3.0{-}3.1~{ m GeV})$	8
Radiative return background	1

First Observation of $\gamma\gamma \to \eta_c(1S) \to p\bar{p}$

• Statistical Significance $\equiv \sqrt{-2 \ln(L_0/L_S)} = 5.3\sigma$

•
$$\Gamma_{\gamma\gamma}(\eta_c) \times B(\eta_c \to p\bar{p})$$

= $\frac{N_{\eta_c}m_{\eta_c}^2}{4\pi^2 \varepsilon L_{\text{int}} \frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}}}$

$$N_{\eta_c} ~~\Gamma_{\gamma\gamma}(\eta_c) B(\eta_c o par p) [ext{eV}]$$

$$\begin{array}{ll} 157{\pm}33 & 7.20 \pm 1.53 \substack{+0.67 \\ -0.75} (\text{Belle}) \\ & 6.63 \pm 1.55 \ (\text{PDG}^*) \end{array}$$

$$lpha rac{\Gamma_i \Gamma_f}{\Gamma_{ ext{tot}}^2} ext{ (in } p ar p o \eta_c o \gamma \gamma) imes \Gamma_{ ext{tot}} \ ext{[FNAL E835 (2003) etc.]}$$

Measured Cross Sections for $\gamma\gamma \rightarrow p\bar{p}$

 $(\eta_c \text{ contribution included})$

$W^{-n}_{\gamma\gamma} ext{ Dependence of } \sigma_{\gamma\gamma o par{p}}(W_{\gamma\gamma})$

fitted n	range of $W_{\gamma\gamma}~({ m GeV})$
$15.1\substack{+0.8 \\ -1.1}$	2.5 – 2.9
$12.4\substack{+2.4 \\ -2.3}$	3.2 - 4.0

- Steeper fall in $W_{\gamma\gamma}$ than pQCD n = 10(n = 10 not rejected for $W_{\gamma\gamma} > 3.2$ GeV)
- Decreasing n in $W_{\gamma\gamma}$ (indication of a transition to asymptotic predictions)

Chen-Cheng Kuo

Angular Distribution in 3 $W_{\gamma\gamma}$ -Ranges

• $W_{\gamma\gamma} = 2.0-2.5$ GeV: enhancement at large-angle (small- $|\cos \theta^*|$)

♦ $W_{\gamma\gamma} = 2.5-3.0$ GeV: enhancement at small-angle (large-|cos θ*|), beginning of the transition from a descending to an ascending trend

♦ $W_{\gamma\gamma} = 3.0-4.0$ GeV: enhancement at small-angle (large- $|\cos \theta^*|$), steeper enhancement for $|\cos \theta^*| \sim 0.5-0.6$

★ Ascending trend is a general feature of pQCD due to the hard scattering amplitude: $\frac{d\sigma}{d|\cos \theta^*|} \propto \frac{1}{tu} \propto \frac{1}{1-\cos^2 \theta^*}$

- Handbag contribution with R_V^p neglected: $\frac{d\sigma}{d|\cos\theta^*|} \propto \frac{1}{1-\cos^2\theta^*}$
- Steeper enhancement of data at higher $|\cos \theta^*|$ must be explained

Summary

- Measurement of $\sigma_{\gamma\gamma\to p\bar{p}}(W_{\gamma\gamma})$ and $\frac{d\sigma}{d|\cos\theta^*|}$
 - ► $W_{\gamma\gamma} = 2.025$ -4.0 GeV, $|\cos \theta^*| < 0.6$ (~ 36000 events selected)
 - ▶ systematic uncertainty: 7%–14%
 - ▶ first observation of $\gamma \gamma \rightarrow \eta_c \rightarrow p\bar{p}, \Gamma_{\gamma\gamma}(\eta_c) \times B(\eta_c \rightarrow p\bar{p})$ determined

$$\bullet \ \text{Fitting of} \ \sigma_{\gamma\gamma \to p\bar{p}}(W_{\gamma\gamma}) \ \text{to} \ W_{\gamma\gamma}^{-n}$$

- ▶ steeper fall but decreasing n in $W_{\gamma\gamma}$ $(n \sim 15 \pm 1 \dashrightarrow 12 \pm 2)$
- \blacktriangleright asymptotically approaching n=10 predictions

$$\bullet \; \frac{d\sigma}{d|\cos\theta^*|} \; \text{in} \; |\cos\theta^*|$$

- ▶ ascending trend (general pQCD feature) from $W_{\gamma\gamma} \sim 2.5 \text{ GeV}$ up
- ► steeper enhancement around $|\cos \theta^*| \sim 0.5$ -0.6 at higher measured-energies (not explained by current models)
- Measurement of $\gamma \gamma \rightarrow p \bar{p}$ is important for the test of QCD and form factor models.

For Detail: PL B621 (2005) 41

 ${\bf Chen}\text{-}{\bf Cheng}\,{\bf Kuo}$