What can we learn about the ratio $|G_E^p(q^2)/G_M^p(q^2)|$ by using space-like, time-like data and dispersion relations

Simone Pacetti INFN Laboratori Nazionali di Frascati

Workshop on Nucleon Form Factors Frascati, 12-14 October, 2005

Outline

Three model-independent applications of the dispersion relations to the nucleon form factors

1 Dispersive description of the ratio G_E/G_M

- Introduction
- Dispersive approach
- Results and conclusions
- 2 The "inverse problem": extracting unphysical form factors from space-like and time-like data
 - Motivations
 - The opportune dispersive technique
 - Results and conclusions
- 3) Two photon contribution to $e^+e^- o p\overline{p}$
 - Work in progress

Motivations

Introduction Dispersive approach Results and conclusions

2000 measurements of the space-like ratio G_E/G_M give an astonishing result: this ratio decreases dramatically as $-q^2$ increases and a linear extrapolation is in agreement with a space-like zero at $(-q^2) \sim 8 \ GeV^2$

Many models have been constructed in order to fit these space-like data In the q^2 data region [-5.5 GeV²; -0.4 GeV²] all these models agree

Problems !

Extending the space-like fits outside the data region to verify the presence of a zero Performing a rigorous continuation of these fits in the time-like region

Ratio $|G_{F}^{\rho}(q^{2})/G_{M}^{\rho}(q^{2})|$ and dispersion relations

Introduction Dispersive approach Results and conclusions

Nucleon Form Factors

Nucleon current operator (Dirac & Pauli)

$$F^{\mu}(q) = \gamma^{\mu} F_{1}(q^{2}) + rac{i}{2M_{N}} \sigma^{\mu\nu} q_{\nu} F_{2}(q^{2})$$

Electric and Magnetic Form Factors $C_{1}(q^{2}) = F_{2}(q^{2}) + F_{2}(q^{2})$

$$G_E(q^2) = F_1(q^2) + F_2(q^2) \quad \tau = \frac{q}{4M_N^2}$$

Elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E'_{\theta} \cos^2 \frac{\theta}{2}}{4E^3_{\theta} \sin^4 \frac{\theta}{2}} \left[G^2_E + \tau \left(1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \right) G^2_M \right] \frac{1}{1+\tau}$$

Annihilation

$$rac{d\sigma}{d\Omega} = rac{lpha^2 \sqrt{1-1/ au}}{4q^2} \left[(1+\cos^2 heta) |G_M|^2 + rac{1}{ au} \sin^2 heta |G_E|^2
ight]$$

N05

Simone Pacetti

Ratio $|G_{F}^{p}(q^{2})/G_{M}^{p}(q^{2})|$ and dispersion relations

Introduction Dispersive approach Results and conclusions

Space-like and time-like data

Introduction Dispersive approach Results and conclusions

Dispersion Relations

A form factor $f(q^2)$ is an analytic function on the q^2 complex plane with the cut $[s_0 = 4m_{\pi}^2, \infty)$.

Dispersion relation for the imaginary part

$$f(q^{2}) = \lim_{R \to \infty} \frac{1}{2\pi i} \oint_{C} \frac{f(z)dz}{z - q^{2}} = \frac{1}{\pi} \int_{s_{0}}^{\infty} \frac{\mathrm{Im}f(s)ds}{s - q^{2}}$$

DR can be used for the ratio only if G_M has no zeros

Subtraction at $q^2 = 0$ to account a non-vanishing asymptotic limit of the ratio

For
$$q^2 \leq s_0 R$$
 is real

$$R(q^2) = R(0) + rac{q^2}{\pi} \int_{s_0}^{\infty} rac{\mathrm{Im}R(s)ds}{s(s-q^2)}$$

$$\mathsf{Re}\mathsf{R}(s) = \mathsf{R}(0) + \frac{s}{\pi} \operatorname{Pr} \int_{s_0}^{\infty} \frac{\mathsf{Im}\mathsf{R}(s')ds'}{s'(s'-s)}$$

N05

Introduction Dispersive approach Results and conclusions

Parameterization and constraints

The imaginary part of R is parameterized by two series of orthogonal polynomials $T_i(x)$

$$\operatorname{Im} R(q^{2}) \equiv I(q^{2}) = \begin{cases} \sum_{i} C_{i} T_{i}(x) & x = \frac{2q^{2} - s_{1} - s_{0}}{s_{1} - s - 0} & s_{0} \leq q^{2} \leq s_{1} \\ \sum_{j} D_{j} T_{j}(x') & x' = \frac{2s_{1}}{q^{2}} - 1 & q^{2} > s_{1} \end{cases} \xrightarrow{\operatorname{Thresholds}} s_{0} = 4m_{\pi}^{2} \\ s_{1} = 4M_{N}^{2} \end{cases}$$

Theoretical conditions on $ImR(q^2)$

Theoretical conditions on $R(q^2)$

() Continuity at
$$q^2 = 4m_{\pi}^2$$

 $\square R(4M_N^2)$ is real and $\operatorname{Re} R(4M_N^2) = \mu_p$

Experimental conditions on $R(q^2)$ and $|R(q^2)|$

J Space-like region $(q^2 < 0)$ data for *R* from TJNAF and MIT-Bates

D Time-like region $(q^2 \ge 4M_N^2)$ data for |R| from FENICE+DM2, BaBar, Lear and E835

 $R(q^2)$

Introduction Dispersive approach Results and conclusions

Reconstructed R in space-like and time-like region

Introduction Dispersive approach Results and conclusions

Asymptotic $G_E(q^2)/G_M(q^2)$

Asymptotic behaviour of *R* and comparison with some existing models

Simone Pacetti Ratio

Ratio $|G_{E}^{p}(q^{2})/G_{M}^{p}(q^{2})|$ and dispersion relations

Introduction Dispersive approach Results and conclusions

Polarization Formulae

Introduction Dispersive approach Results and conclusions

Single Polarization

Results for the polarization vector $\vec{\mathcal{P}}$ in comparison with some existing models

Comparison BaBar-Lear

Simone Pacetti Ratio $|G_{F}^{\rho}(q^{2})/G_{M}^{\rho}(q^{2})|$ and dispersion relations

Introduction Dispersive approach Results and conclusions

Double Polarization

Simone Pacetti

Ratio $|G_{F}^{\rho}(q^{2})/G_{M}^{\rho}(q^{2})|$ and dispersion relations

Introduction Dispersive approach Results and conclusions

G_E/G_M : conclusions

- A dispersive approach, based on the space-like and time-like data for $R(q^2)$ and on the analyticity of the ff's, has been used to obtain a complex expression of the ratio $R(q^2)$ holding for all values of q^2 .
- A space-like zero for *R* has been found in a model independent way at $q^2 \sim -10 \ GeV^2$, with BaBar data and at $q^2 \sim -8 \ GeV^2$, with Lear data. New space-like data, mainly below $q^2 \sim -10 \ GeV^2$, are needed to verify the presence of the zero. (TJNAF plans to attain $q^2 \sim -9 \ GeV^2$ in the near future).
- Only by considering the BaBar time-like data the scaling law seems restored, even if asyntotically and with opposite sign.
- The polarization appears the most powerful tool to disentangle among various models.
- Solution New data of polarized annihilation cross section $e^+e^- \rightarrow N\overline{N}$ or $p\overline{p} \rightarrow e^+e^-$ are expected from GSI, VEPP-2000 and other experiments, they could not only disentangle among the models, but mainly give a complete measurement of the nucleon ff's.

Motivations

Target

To reconstruct the nucleon ff's in the unphysical region, which is the portion of the time-like region where these functions are not experimentally accessible.

Space-like
$$e^- N \rightarrow e^- N$$
Time-like
 $e^+ e^- \rightarrow N\overline{N}$ Only $q^2 < 0$ Only $q^2 \ge 4M_N^2$

Means

- Analyticity
- Space-like and time-like data
- Dispersion relations

The opportune dispersive technique

Results and conclusions

Motivations

$$\begin{split} &\ln G(q^2) = \frac{\sqrt{s_0 - q^2}}{\pi} \! \int_{s_0}^{\infty} \! \frac{\ln |G(s)| ds}{\sqrt{s - s_0}(s - q^2)} \\ &q^2 \leq 0 \qquad s_0 = 4m_{\pi}^2 \end{split}$$

Why?

- To verify the presence of the structure near by the threshold
- To uncover the resonance region to study the vector mesons couplings
- The pleasure of knowing in a model-independent way the ff's where there are no data, but they are still defined

Ratio $|G_{F}^{\rho}(q^{2})/G_{M}^{\rho}(q^{2})|$ and dispersion relations

Motivations The opportune dispersive technique Results and conclusions

The integral equation

The dispersion relation subtracted at t = 0

$$\ln G(t) = \frac{t\sqrt{s_0 - t}}{\pi} \int_{s_0}^{\infty} \frac{\ln |G(s)| ds}{s\sqrt{s - s_0}(s - t)}$$

- It is less dependent on the asymptotic behaviour of the ff.
- So further terms have to be added thanks to the normalization $\ln G(0) = 0.$

Splitting the time-like integral $\int_{s_0}^{\infty}$ into $\int_{s_0}^{s_1} + \int_{s_1}^{\infty}$ we obtain an integral equation of the first kind

Known from
ata and theory
$$\ln G(t) - I(t) = \frac{t\sqrt{s_0 - t}}{\pi} \int_{s_0}^{s_1} \frac{\ln(G(s))ds}{s\sqrt{s - s_0}(s - t)}$$
 Unknown

- To avoid instabilities at threshold $s_1 = 4M_N^2$, the upper boundary has been shifted to $s_2 = s_1 + \Delta$, with $\Delta \simeq 0.5 \ GeV^2$.
- Continuity through the upper boundary s₂ is imposed, at the lower boundary s₀ only very mild continuity is demanded.
- A regularization, depending on a free parameter *τ*, is introduced by requiring the total curvature of the ff in the unphysical region to be limited.

Testing the method

The test

To fix the regularization parameter τ , the space-like (DR) and the time-like (experimental data) pion ff (yellow area) have been used as input in the integral equation to retrieve the time-like ff in the unphysical region.

Simone Pacetti

Ratio $|G_{F}^{p}(q^{2})/G_{M}^{p}(q^{2})|$ and dispersion relations

Motivations The opportune dispersive technique Results and conclusions

the opportune dispersive techniquetition to $e^+e^- \rightarrow \rho\bar{\rho}$ Results and conclusions

Motivations

Testing the method

The test

To fix the regularization parameter τ , the space-like (DR) and the time-like (experimental data) pion ff (yellow area) have been used as input in the integral equation to retrieve the time-like ff in the unphysical region (gray area).

Simone Pacetti

Motivations The opportune dispersive technique Results and conclusions

Nucleon magnetic form factors

 $\mathcal{N}05$

Simone Pacetti Ratio $|G_{F}^{\rho}(q^{2})/G_{M}^{\rho}(q^{2})|$ and dispersion relations

Motivations The opportune dispersive technique Results and conclusions

The phase and the zero hypothesis

The phase

$$\delta(q^2) = -\frac{q^2\sqrt{q^2 - s_0}}{\pi} \int_{s_0}^{\infty} \frac{\ln|G(s)|ds}{s\sqrt{s - s_0}(s - q^2)}$$

Hypothesis of no zeros in the physical sheet

Simone Pacetti

5

Motivations The opportune dispersive technique Results and conclusions

Isospin components

Motivations The opportune dispersive technique Results and conclusions

Isospin=1 comparison

Comparison between the pion ff (gray band) and the isovector component of the nucleon magnetic ff (yellow band) which contains only the ρ -family resonances.

Motivations The opportune dispersive technique Results and conclusions

The "inverse problem": conclusions

- The unphysical magnetic nucleon ff's have been reconstructed in a model independent way by using data, analyticity and a dispersion relation for log |G|.
- Second consistent with $\rho(770)$ and $\rho'(1600)$ mesons, however very large widths are obtained.
- **Phases for the nucleons are consistent with the expectations:** $\delta_N \rightarrow 360^{\circ}$.
- **D** There is an interference pattern near the nucleon threshold ($M \sim 1.88 \text{ GeV}$).
- No sizeable Φ contribution (strangeness content) has been found.
- **•** The problem of the very large widths seems underlying "some physics" rather than a technical lack. The regularization procedure works well in finding the width of the ρ in the pion ff.

The analysis have to be updated by including new data on proton magnetic and electric ff's.

- Cutkosky rule
- Dispersion relations

Why?

To verify how much this contribution affects the extraction of the time-like ff's from the annihilation cross section and if this quantity is measurable.

