Generalized parton distributions from nucleon form factors

P. Kroll

Fachbereich Physik, Universität Wuppertal

October 2005

Outline:

- Introduction
- Analysis of form factors
- Moments of GPDs
- Physical interpretation
- Applications: WACS
- Summary

based on work done in coll. with M. Diehl, T. Feldmann, R. Jakob, hep-ph/0408173

Parton Distributions

determination of q(x), g(x) with the help of DGLAP (evolve with Q^2) Polarized DIS: Δq , Δg

describe longitudinal momentum distributions of partons within proton (IMF)

30 years of experimental (SLAC, CERN, HERA, FNAL, JLab) and theoretical (Barger-Phillips (74), GRV, CTEQ, MRST, ...) effort has lead to a fair knowledge of the PDFs (although not perfect, e.g. $x \rightarrow 0, 1, g, \Delta g$)

Generalized Parton Distributions

D. Müller et al (94), Ji(97), Radyushkin (97)

occurs in DVES ($\gamma^* p \rightarrow \gamma p$, Mp) Q^2 large, t small WAES ($\gamma p \rightarrow \gamma p$, Mp) Q^2 small, t large

soft physics: GPDs $H^q(x,\xi,t), \ \widetilde{H}^q, \ E^q, \ \widetilde{E}^q$ (skewness: $\xi = \frac{p^+ - p'^+}{p^+ + p'^+}$)

- reduction formulas: $H^q(x,0;0) = q(x);$ $\widetilde{H}^q(x,0;0) = \Delta q(x)$
- sum rules: $h_{10}^q(t) = \int_{-1}^1 dx H^q(x,\xi,t);$ $F_1 = \sum_q e_q h_{10}^q;$ $E^q \to F_2^q;$ $\widetilde{H}^q \to F_A^q;$ $\widetilde{E}^q \to F_P^q$
- polynomiality: e.g. $\int_{-1}^{1} dx \, x^{n-1} H^q(x,\xi,t) = \sum_{i=0}^{[n/2]} h^q_{n,i}(t) \xi^i$

universality, evolution, positivity constraints, Ji's sum rule Interpretation (Burkhardt): FT $\Delta \Rightarrow \mathbf{b}$ $H^q(x, 0, t = -\Delta^2) \Rightarrow q(x, 0, \mathbf{b})$ long. momentum and trans. position distribution of partons within the proton

GPD analysis - what can be done?

DFJK hep-ph/0408173 (similar Guidal et al hep-ph/0410251) analogue to PDF analyses

use all available data on G_M^p , G_M^n , G_E^p , G_E^n (\Rightarrow F_1^p , F_1^n , F_2^p , F_2^n), F_A

exploit sum rules at $\xi = 0$

(s

$$\begin{split} F_1^{p(n)}(t) &= \int_0^1 dx \Big[e_{u(d)} \, H_v^u(x,t) + e_{d(u)} \, H_v^d(x,t) \Big] \qquad F_2 \Rightarrow E_v \\ F_A(t) &= \int_0^1 dx \Big[\widetilde{H}_v^u(x,t) - \widetilde{H}_v^d(x,t) \Big] + 2 \int_0^1 dx \Big[\widetilde{H}^{\bar{u}}(x,t) - \widetilde{H}^{\bar{d}}(x,t) \Big] \\ H_v &= H^q - H^{\bar{q}} \\ (s - \bar{s}, \, c - \bar{c} \text{ and sea quark contribution to } F_A \text{ neglected, probably very small}) \\ \text{in order to determine } H_v^{u,d} \,, \widetilde{H}_v^{u,d} \,, E_v^{u,d} \end{split}$$

in a strict mathematical sense an ill-posed problem BUT

Parameterisation of the GPDs

ANSATZ: $H_v^q(x,t) = q_v(x) \exp[f_q(x)t]$ $f_q = [\alpha' \log(1/x) + B_q] (1-x)^{n+1} + A_q x(1-x)^n$ $\alpha' = 0.9 \,\text{GeV}^{-2}$ (fixed); n = 1, 2; $q_v(x)$ from CTEQ (INPUT) Motivation:

for large -t and x: overlaps of Gaussian LC wavefunctions

$$H_v^q(x,t) \to \exp\left[a^2 t \frac{1-x}{2x}\right] q_v(x)$$

low -t, very small x: Regge behaviour expected

$$H_v^q(x,t) \to x^{-\alpha(0)} \exp\left[\alpha' t \log(1/x)\right]$$

criteria for good parameterization (met by ansatz):

- simplicity
- consistency with theor. and phenom. constraints
- plausible interpretation of parameters (if possible)
- stability with respect to variation of PDFs
- stability under evolution (scale dependence of GPDs can be absorbed into parameters)

$$n = 1 \text{ or } 2?$$

Fourier transform to impact parameter plane

$$q_v(x, \mathbf{b}) = \int \frac{d^2 \mathbf{\Delta}}{(2\pi)^2} e^{-i\mathbf{b}\mathbf{\Delta}} H_v^q(x, t = -\Delta^2)$$

b transverse distance between struck quark and hadron's center of momentum: $\sum_i x_i \mathbf{b_i} = 0$ (chosen, $\sum_i x_i = 1$) $\mathbf{b}/(1-x)$ relative distance between struck quark and cluster of spectators average distance: $d_q = \frac{\sqrt{\langle b^2 \rangle_x^q}}{1-x}$ d_q provides estimate of size of hadron

For $x \to 1$ $d_q \to \infty$ for n = 1 while d_q remains finite for n = 2expected for system subject to confinement

Dirac form factors

$$F_1^{p(n)} = \int_0^1 dx \left[e_{u(d)} H_v^u + e_{d(u)} H_v^d \right]$$

 $\int_{x_{max}(0)}^{1(x_{min})} dx \sum e_q H_v^q(x,t) = 5\% F_1^p(t)$

parameters for n = 2 fit ($\mu = 2 \text{ GeV}$): $B_u = B_d = (0.59 \pm 0.03) \text{ GeV}^{-2}$, $A_u = (1.22 \pm 0.02) \text{ GeV}^{-2}$, $A_d = (2.59 \pm 0.29) \text{ GeV}^{-2}$ The GPD $H \ (\mu = 2 \,\text{GeV})$

The GPDs \widetilde{H} , E ($\mu = 2 \,\mathrm{GeV}$)

Moments

u-moments behave similar to F_1^p d-moments small, die out rapidly almost negligible for $-t > 1 \,\mathrm{GeV}^2$ explains why F_1^n negative

Lattice: Göckeler et al, hep-ph/0304249 heavy pion, common dipole fit $M=(1.11\pm0.20){
m GeV}$

Ji's sum rule

$$\langle J_q \rangle = \int_{-1}^1 dx \, x \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$$

valence quark contribution to sum rule respective to orbital angular momentum for our parameterization

$$\langle L_v^q \rangle = \frac{1}{2} \int_0^1 dx \Big[x e_v^q(x) + x q_v(x) - \Delta q_v(x) \Big]$$

 e_v^q from our analysis, q_v known from CTEQ PDFs Δq_v known from axial-vector couplings of nucleon and hyperons

$$\langle L_v^u \rangle = -(0.24 - 0.27) \qquad \langle L_v^d \rangle = 0.15 - 0.19$$

 $\langle L_v^{u+d} \rangle = -(0.04 - 0.12) \qquad (at \ \mu = 2 \, GeV)$

 $e_{2,0}^u(t=0)$ and $e_{2,0}^d(t=0)$ almost equal in magnitude but opposite in sign contributions from E cancel to a large extent in sum

Tomography of d_v quarks

x=0.6

 $q_v^X(x, \mathbf{b}) = q_v(x, \mathbf{b}) - \frac{b^y}{m} \frac{\partial}{\partial \mathbf{b}^2} e_v^q(x, \mathbf{b})$

flavor segregation

in transversely polarized proton

responsible for asymmetries in e.g. $p \uparrow p \to \pi^{\pm} X$?

Feynman mechanism

k,k' momenta of active parton (before and after it is struck) l momentum of spectator system; Λ typical hadronic scale soft region: $1-x \sim \Lambda/\sqrt{|t|}$, $|k^2|, |k'^2| \sim \Lambda\sqrt{|t|}$ Feynman mechanism applies ultrasoft: $1-x \sim \Lambda/|t|$, $|k^2|, |k'^2| \sim \Lambda^2$

at large t: dominance of narrow region of large x, approx.: $q_v \sim (1-x)^{\beta_q}$, $f_q \sim A_q(1-x)^n$ Saddle point method provides $1 - x_s = \left(\frac{n}{\beta_q}A_q|t|\right)^{-1/n}$, $h_{1,0}^q \sim |t|^{-(1+\beta_q)/n}$ (similar to Drell-Yan)

n=2: x_s in soft region and in sensitive x-region \Rightarrow early onset of power beh. ($t \simeq 5 \, {
m GeV}^2$)

n = 1: x_s in ultrasoft region (suspect - confinement!) requires large t in order to have x_s in sensitive region power behaviour of $h_{1,0}^q$ does not set in before $-t \simeq 30 \,\text{GeV}^2$

Testing the power laws:

eff. power $\delta_{\text{eff}} = t \frac{d}{dt} \log[1 - \langle x \rangle_t]$

soft region: $\delta_{eff} = 1/2$ ultrasoft: $\delta_{eff} = 1$ n = 1, 2 practically same δ_{eff} in fit fit implies dominance of Feynman mechanism

u and d quark contributions to Dirac form factor

 $h_{1,0}^q \sim |t|^{-(1+\beta_q)/n}$ CTEQ PDFs: $\beta_u \simeq 3.4$, $\beta_d \simeq 5$ (dimensional counting, 'pQCD'?) dominance of u over d quarks in FF at large t corresponds to that in PDFs at large xexcept G_E^n is much larger than expected (wait for JLab) (preliminary CLAS data on G_M^n used)

Power law behaviour

to cover a large range of possibilities: $H_v^q = q_v(x) \left[1 - \frac{tf_q(x)}{p}\right]^{-p}$

finite $p{:}\, \bullet\, {\rm not}$ stable under evolution $\qquad p \to \infty{:}\,$ exponential behaviour as before

- connection to Regge limit lost
- \bullet reasonable fits to data obtained for $p \gtrsim \! 2.5$


```
broader shape of H
H(x = 0, t) remains finite
i.e. small x contribute to FF
at large t
```

significant ambiguity: correlated x - t dependence of GPDs not fixed by present data theoretical input (bias) needed: combination of Regge behaviour at small x and t with dynamics of soft Feynman mechanism at large t is a physical attractive feature

The Compton amplitudes

 $s, -t, -u \gg \Lambda^2$ $\mathcal{M}_{\mu'+,\mu+} = 2\pi\alpha_{elm} \left\{ \mathcal{H}_{\mu'+,\mu+} \left[R_V + R_A \right] + \mathcal{H}_{\mu'-,\mu-} \left[R_V - R_A \right] \right\}$ $\mathcal{M}_{\mu'-,\mu+} = -\pi\alpha_{elm}\frac{\sqrt{-t}}{m}\left\{\mathcal{H}_{\mu'+,\mu+} + \mathcal{H}_{\mu'-,\mu-}\right\}R_T$ $R_V(t) = \sum_{q} e_q^2 \int_0^1 \frac{dx}{x} H_v^q(x,t)$ $R_A(t) = \sum_q e_q^2 \int_0^1 \frac{dx}{x} \widetilde{H}_v^q(x,t)$ $R_T(t) = \sum e_q^2 \int_0^1 \frac{dx}{x} E_v^q(x,t)$

E decouples in symmetric frame $(\xi = 0)$; $H_v^q = H^q - H^{\bar{q}}$ $\mathcal{H}(s,t)$: NLO $\gamma q \rightarrow \gamma q$ amplitudes $(+\gamma g \rightarrow \gamma g, R_i^g)$ Radyushkin hep-ph/9803316; DFJK hep-ph/9811253; Huang-K-Morii hep-ph/0110208

The Compton cross section

 $\frac{d\sigma}{dt} = \frac{d\hat{\sigma}}{dt} \left\{ \frac{1}{2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 + R_A^2 \right] - \frac{us}{s^2 + u^2} \left[R_V^2 + \frac{-t}{4m^2} R_T^2 - R_A^2 \right] \right\} + \mathcal{O}(\alpha_s)$

 $\frac{d\hat{\sigma}}{dt}$ Klein-Nishina cross section data: JLab E99-114

The onset of factorization

How to improve the analysis?

More data on form factors

JLab:
$$G_M^n$$
 up to $\simeq 5.5 \,\text{GeV}^2$ preliminary data from CLAS
 G_E^p up to $\simeq 9 \quad \text{GeV}^2$ (run in 2007)
 G_E^n up to $\simeq 4.2 \,\text{GeV}^2$ (run in 2006)

JLab upgrade $\leq 13 \text{GeV}^2$ axial vector form factor?

More moments (to become independent of parameterization)

from lattice calculations (provided reliable chiral extrapolation is made) 1/x moments from Compton scattering (provided power corrections have been died out, wait for Jlab upgrade)

Summary

- A first attempt to extract the GPDs from form factor data in analogy to the analyses of the PDFs
- On the basis of physically motivated parameterizations information on H, \tilde{H}, E for valence quarks and at $\xi = 0$ has been obtained
- Parameterization is not unique but results are theoretically consistent and imply the physics of the Feynman mechanism at large t
- Some surprising results have been found:
 - e.g. elm. FF are dominated by u-quarks at larger t
 - e.g. orbital angular momentum carried by valence quarks small but non-zero
- Polarized and unpolarized WACS can be predicted now and found to be in fair agreement with experiment