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Compton Scattering
Different physics highlighted in different kinematic domains.

Real Compton Scattering
Forward limit
Dispersion Relations,

Low Energy Theorem:
GDH Sum Rule
Electric, Magnetic, & Spin
Polarizabilities

High Energy, 
Wide Angle Compton Scattering
s-M2,  M2-u,  −t  >> ΛQCD
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Virtual Compton Scattering
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Low Energy Theorem:
(P. Guichon et al)
Generalized Polarizabilities
Dispersion Relations,
(B. Pasquini et al)

Deeply Virtual Compton Scattering
s-M2,  Q2 >> ΛQCD

2

−t << Q2

Generalized Parton Distributions
Spatial imaging of quarks & gluons

Wide angle Compton Scattering
s,Q2, −t  large, no constraint on u.

p

s =  (q+p)2, 
Q2 = −q2, 
u =  (p-q′)2

t  =  (q-q′)2



Jefferson Lab
Continuous Electron Beam Accelerator Facility

Hall A
High Resolution Spectrometers (HRS2)

VCS: H(e,e’p)X
100µA e− on 15 cm liquid H2 target

RCS: H(γ,γ’p)
≤ 40µA e− on Cu radiator + 15 cm liquid H2 target



Wide Angle Compton Scattering

• Asymptotic limit: s-M2,  −t,  M2-u ∞ …
“pure” Perturbative QCD  (G.Farrar & S.J.Brodsky…)

Sub-asymptotic: s-M2,  −t,   M2-u  ≤ 10 GeV2

• Conjecture: Handbag dominance (Feynman mechanism)
• Radyushkin, Kroll: Factorized ansatz (GPD).

• Quark propagator (xP+k⊥+q)2 xP·q
• G.Miller, unfactorized

• Exact Klein-Nishina amplitude
• Constituent Quarks

• Wave function ansatz

+ …

+





H(γ,γ)p 

• 10-40µA beam on 6% 
radiator and 1g/cm2 H2

(mixed γ+e beam)
• Recoil Proton detected 

in HRS
Focal Plane 
Polarimeter

• Scattered photon 
detected in 700 element 
Pb-Glass array

• Scattered electron 
deflected by magnet and
detected in Pb-Glass.

700 element
Pb-Glass

Calorimeter

e- deflection
Magnet

proton to HRS focal plane
& FPP

H2
Target

e−

Beam

e, γ to 
dump

γ

e−

e−

Jefferson Lab E99-114



Electron,                 Compton, π0 events

• 2-D plot of 
position of EM 
shower, relative 
to elastic 
prediction from 
recoil proton 
kinematics



RCS Differential Cross Sections
JLab E99-114, 25 kinematic points w/ statistical errors.

2 gluon exchange pQCD calculations only generate a small piece of the scattering 
amplitude, even with highly asymmetric Distribution Amplitudes





Longitudinal Polarization Transfer in RCS
) ,( ppKLL
vr γγ= Eγ=3GeV

CQM=G.A.Miller PRC 69(2004)

) ,( ppALL γγrr=

E99-114

• Experimental evidence for Handbag mechanism
CQM & GPD Calculations

• pQCD (2Gluon exchange) strongly ruled out



Handbag Amplitude:  
Klein-Nishina Scaling at fixed -t?

θγγ ≤ 100°



γp γp

E99-114 Statistical errors only

Light Front Cloudy Bag Model
(only 3-quark content included 

at large x for RCS

Handbag amplitude &
Wavefunction ansatz
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Cross section scaling at fixed θγγCM

ns
f

dt
d )(θ

→
σ

p⊥ largest at θCM=90°

Cornell

JLab
E99-114

n+2 = Sum of # of 
elementary fields in 
initial & final state



Future Prospects for RCS

• Ales Psaker, A. 
Radyushkin (ODU): 
– Improved treatment of 

k⊥ in handbag 
amplitude

• C. Weiss:  Massless 
quarks in constituent 
quark wavefunction of 
proton.

• Measurement of ALL
at 4 GeV and 120°
(Hall C)

• Double kinematic 
range in s and t with 
JLab @ 12 GeV



Low Energy Compton Scattering
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Forward and Backward Low Energy Scattering Amplitudes
D. Babusci, et al., Phys. Rev. C58, 1013 (1998):
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Real Compton Scattering & Proton Polarizabilities

World Data: (1960 - 2001, Moscow, Saskatoon, Illinois, Mainz)

RCS Experiment: V. Olmos de Leon et al., Eur. Phys. J A10, 207 (2001):

O(p3)χPT: V. Bernard, et al., Phys. Lett. B 319 269 (1993).

O(p4)χPT: V. Bernard, et al., Z. Phys. 348 317 (1993):

Experiment O(p3)χPT

αE (12.1 ± 0.3stat ∓ 0.4syst) 12.5 10−4 fm3

βM ( 1.6 ± 0.4stat ± 0.4syst) 1.25 10−4 fm3

γπ −(36.1 ± 2.1stat ± 0.9syst) −38.3 10−4 fm4

γ0 (1.02 ± 0.08stat ± 0.10syst) 4.5 10−4 fm4

O(p4)χPT introduces uncertainties ≈ ±3 in each quoted value from

phenomenological constants, esp. ∆ and N ∗ terms.

Harmonic Oscillator model: αE ≈ αQED · Volume · (b/λC)

αE << Volume: proton is very stiff, intrinsically relativistic (λC ≈ size)

βM << αE: Strong cancellation of para- and dia-magnetism.

N → ∆ transition over saturates βM.
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Idea of Virtual Compton Scattering for Polarizabilities:

γ + p invariant mass ≤ M + mπ.

2π/q = virtual-photon wavelength, controlled by experiment.

Measure spatial variation of polarization inside proton:

q = fourier transform variable.

VCS

= +

Born

+

Non-Born

NB

P.A.M. Guichon, G.Q. Liu, A.W. Thomas, Nucl. Phys. A, 591 606 (1995).

P.A.M. Guichon, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41 125 (1998).

Lvov...
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Low Energy Expansion (LEX) of VCS

q′ = final photon energy in γp CM frame.

dσ = dσBH+Born + vLL [PLL − PTT/ε] + vLTPLT + O(q′),

PLL = −
√

24M GE,p(Q̃
2)P (C1,C1)0(Q̃2) =

4M

αQED
GE,p(Q̃

2)αE(Q̃2)

PTT = 6M(1 + τ̃)GM,p(Q̃
2)

[
P (M1,M1)1(Q̃2) +

√
8τ̃P (C1,M2)1(Q̃2)

]
PLT =

√
3

2
M

√
1 + τ̃

[
GE,p(Q̃

2)P (M1,M1)0(Q̃2) −
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6GM,p(Q̃
2)P (C1,C1)1(Q̃2)

]
= − 2M

αQED

√
1 + τ̃GM,p(Q̃

2)βM(Q̃2) − spinG.P.

where vLL, vTT , and ε are kinematic factors and
Q̃2 = Q2 in q′ → 0 limit.

Generalized Polarizabilities (GP) P (Λf ,Λi)∆S(Q̃2),
(Λf ,Λi) = (final, initial) Multipolarity; ∆S = 0,1: Proton spin flip.
In Q̃2 → 0 limit:

P (C1,C1)0 −→ −
√

2/3 αE/αQED

P (M1,M1)0 −→ −
√

8/3 βM/αQED

PTT −→ 0
P (C1,C1)1 −→ 0
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Virtual Compton Scattering Experiments:

• MAMI: k ≤ 0.8 GeV qcm = 0.6 GeV/c

J. Roche et al., Phys. Rev. Lett., 85, 708 (2000)

• Jefferson Lab: k = 4 GeV Q2 = 1.0, 1.9 GeV2.

hallaweb.jlab.org/physics/experiments/E93-050

G. Laveissiere et al., Phys. Rev. Lett., 93, 122001 (2004).

• Bates-Linac: k = 0.6 GeV Q2 = 0.05 GeV2.

R. Miskimen, UMass-Amherst, spokesperson
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Reconstruct  H(e,e’p)X coincidence at target

Reconstruct 1mm 
precision from 

4mm⊗20KHz raster, 
with 30 KHz 

bandwidth Beam 
Position Monitor

500 MHz Beam 
Structure

Time Coincidence Spatial Coincidence
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Raw H(e,e’p)X Missing Mass squared (MX2) Spectrum
Prominent H(e,e’p)π0 peak at MX

2 = mπ
2 = 20,000 MeV2

Large unphysical background obscures for MX
2 =  0 VCS events

Cuts to remove:
•Elastic ep ep events.  Cut 
on electron removes mis-
identified elastic events with 
proton punching through 
collimator
•H(e,e’p)X events with 
proton reconstructed to 
punch through collimator
•H(e,e’p)γ events, if 
assumption that γ||beam puts 
proton in collimator



JLab (ep → epγ) cross section for the lowest and highest q′ bin, at 40◦ out-of-plane (lattitude)

Only statistical errors are shown. The abscissa is the azimuthal angle (or longitude). The

full curve is the (BH+Born) cross section, the dashed curve includes the first-order GP effect

fitted in this analysis.
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LEX fit to VCS data below threshold (straight line) for each data set of JLab

data. Black circles correspond to out-of-plane data, and the inner plot is a

zoom on the lepton plane data (triangles).
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J. Roche et al.

Phys. Rev. Lett.

85, 708 (2000)
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Dispersion Relations

B. Pasquini, et al., Eur. Phys. J. A 11, 185 (2001)

I. Complete formalism for VCS cross section up to Nππ threshold.
Input from
• γN → Nπ multipoles (MAID)
• t-channel π0 exchange
• Two low-energy subtraction “constants” (functions of Q2):

∆β(Q2): t-channel σ-meson exchange
∆[α+β](Q2) s-channel Nππ and Nη resonances not included in MAID.

• ∆β and ∆α fitted independently to data at Q2 = 1 and Q2 = 1.9 GeV2 with
dipole ansatz:

∆β =
∆β(0)[

1 + Q2/Λ2
β

]2 ∆α =
∆α(0)

[1 + Q2/Λ2
α]

2

II. Predictions of spin polarizabilities.

• Separation of αE from [PLL − PTT/ε] and βM from PLT

III. Interpretation of generalized polarizabilities.
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(ep → epγ) cross section for JLab data set I-b in six intervals of the azimuthal angle ϕ (angle

between lepton and hadron planes) as a function of W .

The curves are 1-σ DR fits to total of 700 data points.
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RCS: Olmos de Leon et al [MAMI],,

VCS: J. Roche et al [MAMI-A1], G. Laveissiere et al [JLab E93050].

Dashed Curves are total χPT, Solid curves are χPT for PLL and scalar part of PLT only.

Dotted curves are χPT for PTT and spin-flip part of PLT .

DotDashed Curves are Dispersion Relation πN predictions for PTT and spin-flip part of PLT .
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Generalized Polarizabilities:

Obtained by subtracting DR predictions for spin-flip polarizabilities from data.

Solid curves are χPT for αE and βM .

DotDashed curves are πN contributions to αE and βM .

Dashed curves are σ-meson (pion-cloud) exchange term ∆β (fitted)

Dipole parameter Λβ < Λ(elastic): Indicative of large size of pion cloud.

Dotted curve is ∆[α + β] term, fitted with dipole ansatz to Q2 = 0&1 GeV2 data.
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∆[α + β] = αE − απN
E + ∆β

∆[α + β] = F asy
2 amplitude in DR.

Spatial distribution not the same as GE.

Dashed Curve is σ-exchange term ∆β,

Dipole paramater Λβ < Λ(elastic) .

Indicative of large size of pion cloud.
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Contributions to ∆[α + β](Q2)

γ∗p → N∗ Amplitudes: L. Tiator, et al., nucl-th 0310041

dependence of the transverse and longitudinal helicity amplitudes for the P (1440) and the S (1535) resonance
17



Conclusions and Prospects for 
VCS/Generalized-Polarizabilities

• Low Energy Expansion analysis of data up to Nπ threshold 
and Dispersion Relation Analysis of data up through Nππ
threshold give consistent results.

• DR interpretation of Generalized Polarizabilities:
– Diamagnetism shows large spatial size, as expected from pion 

cloud.
– Large contribution to Electric Polarizability from excitations 

beyond Nπ, with non-trivail Q2 dependence. 
– Two photon amplitude is not dominated by low energy excitations.

• New Results soon from 
– Low Q2 Bates experiment;
– Single and Double Spin asymmetries at MAMI

• Future experiments with MAMI upgrade.



VCS(Q2=1GeV2) dσ(γ*,γ) at large −t: 
(for θγγ≈180°, −t ≈ W2 = s)

|BH|2

•Resonance form-factors at ∆ and S11, D13
•Evidence for compton scattering from point-like objects  for W ≈ 2 GeV?;  or
•Evidence for Nucleon pole dominance of u-channel Regge: T ∝ sa(u)?

|BH+Born(N+π0)|2

RCS, JLab
θγ,γ≥110°

RCS, world data θγ,γ≥110°

VCS, JLab
θγ,γ = 180°



Andrei Afanasev,  BNSA: Theory, Precision ElectroWeak Workshop, 8/15/05Operated by the Southeastern Universities Research Association for the U.S. Dept. of Energy

Normal Beam Asymmetry from 2γ-exchange
. Preliminary data from HAPPEX on the proton and He-4 targets
. Measures absorptive part of Compton scattering amplitude,

integrated over photon virtualities and W 
. Calculations by Afanasev&Merenkov
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