Do we see NFF in e⁺e⁻→ hadrons in ISR study at BaBar?

E. Solodov

BINP Novosibirsk

Representing BaBar collaboration

Motivation

- Low energy e⁺e⁻ cross section dominates in hadronic contribution to g-2 of muon
- Poor direct e⁺e⁻ data in 1.4 2.5 GeV region
- New information for hadron spectroscopy at low masses
 dip at 1.9 GeV observed by FOCUS and DM2
- Access to charmonium region (J/ ψ , ψ (2S) decays)
- ISR at BaBar gives competitive statistic
- BaBar has excellent capability for ISR study
- All major hadronic processes are under study

$$e^+e^- → 2\mu\gamma$$
, 2πγ, 2Kγ, 2pγ, 2Λγ

- $e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma, K^+K^-\pi^+\pi^-\gamma, 2(K^+K^-)\gamma$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma, \pi^+\pi^-\pi^0\pi^0\gamma, K^+K^-\pi^0\pi^0\gamma, \pi^+\pi^-\pi^0\eta\gamma \dots$
- $e^+e^- \rightarrow K^+K^-\pi^0\gamma, \, K^+K^-\eta\gamma \ (KK^*\gamma,\,\phi\pi^0\gamma,\,\phi\eta\gamma \ldots)$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0\gamma, \pi^+\pi^-\pi^+\pi^-\eta\gamma, K^+K^-\pi^+\pi^-\pi^0\gamma \ \dots$
- $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\gamma$, $3(\pi^+\pi^-)\gamma$, $K^+K^-2(\pi^+\pi^-)\gamma$ new results, this talk

Analysis procedure for $3(\pi^+\pi^-)$

- 232 fb⁻¹ of BaBar data from "Raw" ISR Ntuples
- 400k of MC simulation (phase space for $e^+e^- \rightarrow 6\pi\gamma$ and $\rho 4\pi\gamma$)
- 100k of MC simulation (phase space for $e^+e^- \rightarrow 2K4\pi\gamma$)
- NLO radiative processes are included
- Background processes (from MC, normalized and subtracted):
 e⁺e⁻ → τ⁺τ⁻ e⁺e⁻ → qq (q = u,d,s,c) - major background is from e⁺e⁻ → 6ππ⁰
- 1C fit for events with ntrk=4; ISR photon is detected but not used in fit
- "ISR-type" background is subtracted using χ^2 side band
- If 1 or 2 kaon ID $2K4\pi\gamma$ hypothesis is used.
- All procedures are the same as for e⁺e⁻→ 4πγ analysis (published in Phys. Rev. D71 052001 (2005).

Signal events

Comparison with MC simulation

Detail comparison

Mass distributions in comparison with MC Angular distributions in c.m. frame 10 .0 1.6 .0-1.6 GeV/c² 100 50 5 25 50 0 0 0 2 3 0.5 1.5 2 2. 2 3 0.5 0.5 0 0.5 28 .6-2.0 GeV/c² 400 1000 500 2000 100 1.4-1.8 GeV 200 0 0 0 0 0 2 3 0.5 1.5 2 2. 2 3 0.5 -0.5 0.5 Events 0009015 .0-3.05 GeV/c² O 400 2000 2000 1000 2.0. 05 GeV 1000 200 vents 0 0 0 0 0 2 3 0.5 1.5 2 2 2 3 -0.50 0.5 -0.50 0.5 400 h .05-3.15 GeV/c² ũ 200 500 50 200 200 100 3.05-3.15 GeV/c 0 0 0 0 0 2 3 0.5 1.5 2 2. 2 3 0 0.5 -0.5 -0.5C 0.5 2000 15-4.5 GeV/c² 1000 500 1000 200 1000 500 .5 GeV 500 250 100 0 0 0 0 0 0.5 1.5 0.5 2 3 2 2. 2 3 Δ _1 -0.50 -0.50 0.5 $m(\pi^{+-}\pi^{+}\pi^{-}) (GeV/c^{2})$ $m(\pi^+\pi^-)$ (GeV/c²) $m(2(\pi^{+}\pi^{-})) (GeV/c^{2})$ $\cos(\vartheta)(\operatorname{softest} \pi)$ $\cos(\vartheta)(\text{all rest }\pi)$

Relatively good Data-MC agreement. Uncertainty in acceptance should not be larger 3% (using experience from 4π study and comparison with phase space MC).

Efficiency from MC

19980 of MC events are selected

We are unable to reproduce trick with 1 lost track to determine tracking efficiency for data - background too big.

But for MC this procedure is performed and gives exactly the same value as for 4π final state (BAD831).

We use the same 0.8%/track correction for 6π final state what gives +5±3% overall correction to efficiency.

Cross section for $e^+e^- \rightarrow 3(\pi^+\pi^-)$

Analysis procedure for $2(\pi^+\pi^-)\pi^0\pi^0$

- 232 fb⁻¹ of BaBar data from "Raw" ISR Ntuples
- 400k of MC simulation (phase space for $e^+e^- \rightarrow 4\pi 2\pi^0\gamma$)
- NLO radiative processes are included
- Background processes (from MC, normalized and subtracted):

 $e^+e^- \rightarrow \tau^+\tau^$ $e^+e^- \rightarrow qq (q = u,d,s,c)$ - major background is from $e^+e^- \rightarrow 4\pi 3\pi^0$

- 5C fit for events with ntrk = 4 and nphot \ge 5
- Best χ^2 form all 2 pair combinations in 25 MeV windows of π^0 mass
- Masses of π^0 are used as constraints, energy of ISR photon is not
- If 1 or 2 kaon ID $2K2\pi 2\pi^0 \gamma$ hypothesis is used.
- Contribution from other ISR processes is subtracted using χ^2 side band

How good are MC distributions?

Generator with phase space relatively good describes observables

October 14, 2005

Comparison with MC simulation

Efficiency from MC

7922 events are selected; efficiency ~6% with 5C fit (+cuts)

We are unable to reproduce trick with 1 lost track to determine tracking efficiency for data - background too big.

We use the same 0.8%/track correction as for 4π final state what gives +3±2% overall correction to number of experimental events.

 π^{0} efficiency correction was studied with $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ events (BAD1163) and was found to be +2.8 ± 1.5%. For two π^{0} correction is taken as ~ +6 ± 3%. Momentum dependence used as weight for all hists .

Cross section for $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0$

Systematic errors:

Background subtraction	 3-5%
Tracking efficiency	 3%
Luminosity	 3%
Acceptance	 3-5%
χ^2 cut uncertainty	 6%
π^0 efficiency	 3%

Total

-- 11%

E.Solodov Workshop on NFF

How big is $\omega(782)$ contribution?

correlation with ω in π^0 1 distribution :

 $|m_{3\pi}-m_{\eta}|$ <0.02 - signal events $0.02 < |\dot{m}_{3\pi} - m_{\eta}| < 0.04$ - bkg. Events

~ 200 of ω η events are selected

Fit to number of ω for 0.025 GeV/c² bin $\ln 2(\pi^+\pi^-)\pi^0\pi^0$ mass (128 bins in 1.3-4.5 GeV/c²) (example for ~ 2 GeV region)

How big is $\omega(782)$ contribution?

Corrected on B($\omega, \eta \rightarrow 3\pi$)

Cross section ratio

Cross section fit for $3(\pi^+\pi^-)$, $2(\pi^+\pi^-)\pi^0\pi^0$ d(π⁺π)), nb $x(2(\pi^{+}\pi^{-})\pi^{0}\pi^{0}), nb$ σ_0 = 0.12 ± 0.03 nb $\sigma_0 = 0.46 \pm 0.10 \text{ nb}$ $m_1 = 1.88 \pm 0.05 \text{ GeV/c}^2$ $m_1 = 1.86 \pm 0.02 \text{ GeV/c}^2$ $\Gamma_1 = 0.13 \pm 0.03 \text{ GeV}$ $\Gamma_1 = 0.16 \pm 0.02 \text{ GeV}$ 1 $\varphi_1 = 21 \pm 40 \text{ deg.}$ $\varphi_1 = -3 \pm 15 \text{ deg.}$ 0.5 2 0 2 2.5 3 4 4.5 E_{c.m.} (GeV) 1.5 3.5 1.5 2.5 2 3 3.5 4.5 E_{c.m.} (GeV) $\sigma(e^+e^- \to V_1 + V_2) = \frac{4\pi\alpha^2}{s^{3/2}} \left(\frac{gm_1^2 e^{i\varphi}}{m_1^2 - s - i\sqrt{s\Gamma_1}} + A_{V_1}(s)\right)$ Cross section is described as: $A_{V_1}(s) = c_0 + c_1 \frac{e^{\frac{-\beta}{\sqrt{s} - m_0}}}{(\sqrt{s} - m_0)^{2-\alpha}}$ (N.N.Achasov, hep-A_{V1} - Jacob-Slansky ph/9609216) model for the continuum.

The dip is not well described by single BW !

October 14, 2005

FOCUS data

$$\begin{split} m_1 &= 1.91 \pm 0.01 \; \text{GeV/c}^2 \\ \Gamma_1 &= 0.037 \pm 0.013 \; \text{GeV} \\ \phi_1 &= 10 \pm 30 \; \text{deg.} \end{split}$$

Figure 2: E687 $3\pi^+3\pi^-$ invariant mass distribution. Continuous line: fit with two resonances and Jacob-Slansky continuum (parameters in Tab. 1). Inset: relative fraction of each amplitude without interference.

How about 4π final states?

Two (red and blue) BWs fit with free relative phase

Nothing is seen in 3π or 5π final states !

October 14, 2005

Summary table

Experiment	Reaction	m, GeV/c ²	Г, MeV	φ, d.eg	$\sigma_{0}^{}$, nb
DM2	3(π+π-)	1.93±0.03	35 ± 20		
FOCUS	3(π+π-)	1.91±0.01	37 ± 13	10 ± 30	
BaBar	3(π+π-)	1.88±0.05	130 ± 30	21 ± 40	0.12 ± 0.03
BaBar	2(π ⁺ π ⁻)π ⁰ π ⁰	1.86±0.02	160 ± 20	-3 ± 15	0.46 ± 0.10
BaBar	2(π+π-)	1.88±0.01	180 ± 20	117 ± 6	0.18 ± 0.02
BaBar	$\pi^+\pi^-\pi^0\pi^0$	1.89±0.02	190 ± 20	144 ± 10	0.37 ± 0.05

Summary

- $e^+e^- \rightarrow 3(\pi^+\pi^-)$, $2(\pi^+\pi^-)\pi^0\pi^0$ cross sections have been measured with 6-11% syst. errors using ISR at BaBar publication is in preparation (PRD).
- $\sigma(2(\pi^+\pi^-) \pi^0\pi^{0)} \sigma(3(\pi^+\pi^-)) = 3.98 \pm 0.06$, $\omega(782)$ contribution is demonstrated.
- Structure at 1.9 GeV is seen but wider than in DM2 and FOCUS.
- The same (?) structure is demonstrated in $e^+e^- \rightarrow 2(\pi^+\pi^-)$, $\pi^+\pi^-\pi^0\pi^0$ reactions and cross section is estimated
- BW fit gives $m = 1.88 \text{ GeV/c}^2$ and $\Gamma = 0.13-0.18 \text{ GeV}$ for this structure and distructive interference with continuum.
- No evidence of the structure is in odd number of pions
- We need a theoretical input for proper description of the dip and extracting correct parameters to identify a nature of it.