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Insights for QCD 
from AdS/CFT
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• Ratio of proton to Delta trajectories= ratio of 
zeroes of Bessel functions.

• One scale ΛQCD determines hadron spectrum 
(slightly different for mesons and baryons)

• Only quark-antiquark, qqq, and g g hadrons appear 
at classical level

• Covariant version of bag model: 
confinement+conformal symmetry 

Features of HolographicModel
de Teramond sjb
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New Perspectives in QCD from 
AdS/CFT

• Need to understand QCD at the Amplitude Level:       
hadron wavefunctions!

• Remarkable new insights from AdS/CFT, the duality 
between conformal field theory and  Anti-de Sitter Space

• Impact of ISI and FSI: Single Spin Asymmetries, Diffractive 
Deep Inelastic Scattering, Shadowing, Antishadowing

42
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Rosenbluth extractions of GE and GM

Initial Rosenbluth measurements
consistent with form factor scaling

For large Q2 values, !G2
M dominates

and G2
E becomes difficult to extract

GM(Q2) " µpGE(Q2)

Janssens et al., 1966

Q2=0.39 GeV2

µp GE /GM = 1.061+/#0.058
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John Arrington

Two-photon exchange: Experimental Overview

Introduction

Future experiments

Workshop on Nucleon Form Factors
Frascati, 12 October, 2005

Argonne National Lab

Two-photon exchange corrections

Evidence for two-photon exchange

Rosenbluth measurements (LT): GE, GM

Polarization transfer (PT): GE /GM

or

"How to turn an O(!"#) effect into a 200% error"

$-dependence of TPE effects: Cross section and polarization transfer

Size of TPE effects: e+/e- comparisons, PT/L-T comparisons

Uncertainties in the TPE, form factors
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Studies of two-photon effects (’50s and ’60s)

Definitive test: Positron-proton scattering vs. electron-proton scattering

e+/e!

J. Mar et al., PRL 21, 482(1968)
  and refs therein

<R> = 0.993+/!0.006
L. Camilleri et al., PRL 23, 149 (1969)

(Q2 < 1 GeV2)

<R> = 1.003+/!0.005

µ+/µ!

One-photon approximation
assumed to be good to ~1%

"e+
1 + 4 Re(A2# /A1# )

(A1# +A2# )
2

=
"e- (A1# !A2# )

2 $$$$R ==

However: Low luminosity of secondary e+/µ beams meant that precise limits

were only available for low Q
2
 and/or small scattering angles

John Arrington

Two-photon exchange: Experimental Overview

Introduction

Future experiments

Workshop on Nucleon Form Factors
Frascati, 12 October, 2005

Argonne National Lab

Two-photon exchange corrections

Evidence for two-photon exchange

Rosenbluth measurements (LT): GE, GM

Polarization transfer (PT): GE /GM

or

"How to turn an O(!"#) effect into a 200% error"

$-dependence of TPE effects: Cross section and polarization transfer

Size of TPE effects: e+/e- comparisons, PT/L-T comparisons

Uncertainties in the TPE, form factors
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GE/GM from Polarization Transfer

GE/GM goes like ratio of two components

     --> insensitive to absolute polarization, analyzing power
     --> less sensitive to radiative corrections

N. Dombey, Rev. Mod. Phys. 41, 236 (1969)

Also useful for neutron (where GE << GM, so L-T very difficult)

GE

GM 2Mp

=  -
PT

PL

(E + E’) tan(!e/2)

Use polarized electron beam, unpolarized proton target,
measure the polarization transferred to the struck proton

Polarization along q

Polarization perpendicular
to q (in the scattering plane)

PN = 0 Polarization normal to
scattering plane

Comparison of different electron polarizations
     --> cancellation of false asymmetries

PT = 2  "(1+")  GEGM tan(!e/2)

PL = M
-1
p   (E+E’)  "(1+") G

2

M tan
2
(!e/2)
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GE/GM from Polarization Transfer

M. K. Jones, et. al., PRL 84 (2000) 1398

O. Gayou, et. al., PRC 64 (2001) 038202

O. Gayou, et. al., PRL 88 (2002) 092301

Jefferson Lab:

B. D. Milbrath, et. al., PRL 82 (1999) 2221(E)
MIT-Bates:

µpGE/GM ~ 1 - 0.13 (Q
2
-0.04)

Articles in Science News, Physics Today, New York Times, USA Today, etc...

Surprising result: µpGE  = GM at large Q
2

/

-Renewed interest in nucleon form factors, nucleon structure

-New examination of long-standing pQCD predictions

-Highlighted the role of relativity, angular momentum

-Generated interest outside of the field

Mainz:

Th. Pospischil, et. al., EPJA 12, (2001) 125
(low Q2 - not shown in figure)

Predicted by Iachello!
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Proton              RatioGE/GM

II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:

d!

d"
!!Mott!GEp

2 "#GMp

2

1"#
"2#GMp

2 tan2$%/2&" , $1&

where #!Q2/4Mp
2 , % is the electron scattering angle, Q2

!4EeEe!sin
2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,

!R'
d!

d"

($1"#&

!Mott
!#GMp

2 $Q2&"(GEp

2 $Q2&, $2&

where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:

GEp

GMp

!#
Pt

Pl

$Ee"Ee!&tan$%/2&
2Mp

, $3&

where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.

J. ARRINGTON PHYSICAL REVIEW C 68, 034325 $2003&

034325-2

Rosenbluth (Longitudinal-Transverse)

Separation

Polarization Transfer

LT

τ = Q2/4M2

ε =
[
1 + 2(1 + τ) tan2 θ/2

]
−1

σR = G2

M (Q2) +
ε

τ
G2

E(Q2)

from slope in     plotGE/GM ε

PT

GE

GM

= −

√
τ(1 + ε)

2ε

PT

PL

PT,L polarization of recoil proton

Wally Melnitchouk 
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• Polarization transfer Jlab measurement of space-
like form factor: GE/GM decreasing; revolution!

• Time-like data from Babar: GE/GM increasing

• Rosenbluth unreliable

• GE-GM scaling wrong

• Possible problem for PQCD

• Two-Photon exchange to the rescue.  Resonance 
model vs. parton handbag  -- need both even to 
get Thomson limit, LET

•  48
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!"
TPE

"

Recent (but slightly out of date) calculations
P. Blunden, W. Melnitchouk, and J. Tjon, PRL 91 142304 (2003)

-Improved calculation of box diagrams,  (unexcited intermediate state only)

-Axial-VMD model

-Provides #-dependence (arbitrary magnitude)

A. Afanasev, private communication

-GPD based model, $-q coupling

Chen, Afanasev, Brodsky, Carlson, Vanderhaeghen: PRL 93 122301 (2004)

-Not valid at low Q
2
 or # values

My summary:

Calculations differ in magnitude and
#-dependence, but rapidly improving

All show small effects at large #

All show decrease at low #

All show weak Q
2
-dependence

Consistent with e+/e- ratios and observed form factor discrepancy

1)

2)

-Out of date, included for completeness

P.A.M. Guichon and M. Vanderhaeghen, PRL 91, 142302 (2003)
-Generalized formalism for elastic scattering beyond Born approximation

M. Rekalo and E. Tomasi-Gustafsson, EPJ A22, (2004);
E. Tomasi-Gustafsson, F. Lacroix, C. Duterte, G.I. Gakh, EPJ A24 (2005)

-Model-independent properties, connection of time-like and space-like regimes

Other relevant works:

Arrington
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M
F q

elastic contribution

where Λ∆ is the cutoff. The form factor entails some model-dependence of our results, which
is unavoidable in any dynamical hadronic calculation. The isospin transition operator T3 is
defined by the relations

∑3
α=1 T †

αTα = 1 and TαT †
β = δαβ − τατβ/3, where τ1,2,3 are the usual

Pauli matrices. The vertex with an outgoing ∆ is given by the Dirac conjugate of Eq. (3),

Γαν
γN→∆(p, q) ≡ iV αν

∆out(p, q) = γ0

[
Γνα

γ∆→N(p, q)
]†

γ0, with pα and qν the four-momenta of
the outgoing ∆ and incoming photon, respectively. The γN∆ vertex is orthogonal to the
four-momenta of both the photon and the ∆:

qνΓ
να
γ∆→N(p, q) = 0, pαΓνα

γ∆→N(p, q) = 0 . (5)

The first of these equations ensures the usual electromagnetic gauge invariance of the cal-
culation while the second allows us to use only the physical spin 3/2 component,

S∆
αβ(p) =

−i

p/ − M∆ + i0
P3/2

αβ (p) , P3/2

αβ (p) = gαβ −
1

3
γαγβ −

1

3p2
(p/γαpβ + pαγβp/) , (6)

of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.

The loop integrals corresponding to the box and crossed-box diagrams in Fig. 1 can be
written as

Mγγ
∆ = −e4

∫ d4k

(2π)4

N∆
box(k)

D∆
box(k)

− e4

∫ d4k

(2π)4

N∆
x−box(k)

D∆
x−box(k)

, (7)

with the numerators and denominators given by

N∆
box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γµ [p/1 − k/ + me] γνu(p1) , (8)

N∆
x−box(k) = U(p4)V

µα
∆in(p2 + k, q − k) [p/2 + k/ + M∆]P3/2

αβ (p2 + k)V βν
∆out(p2 + k, k)U(p2)

× u(p3)γν [p/3 + k/ + me] γµu(p1) , (9)

D∆
box(k) =

[
k2 + i0

] [
(k − q)2 + i0

] [
(p1 − k)2 − m2

e + i0
] [

(p2 + k)2 − M2
∆ + i0

]
, (10)

D∆
x−box(k) = D∆

box(k)
∣∣∣
p1−k→p3+k

, (11)

where U and u denote the proton and electron four-spinor wave functions, respectively.
Compared to the case of the nucleon [6], the presence of a ∆ in the intermediate state entails
a more complicated structure of the numerator. Also the loop integrals with a ∆ are not
infrared divergent, in contrast with the nucleon contribution where the infrared part is very
important [10, 15]. The evaluation of Eq. (7) involves preliminary algebraic manipulations
to effect cancellations between terms in the numerators and denominators and subsequent
integration of the thus simplified expressions. The result is obtained analytically in terms of
the standard Passarino-Veltman dilogarithm functions [16]. In the calculation we used the
computer package “FeynCalc” [17].

The first and second loop integrals in Eq. (7) must be mutually related by crossing sym-
metry, which can be formulated in terms of the numerator of Eq. (2) using the Mandelstam
variables s = (p1 + p2)2, t = (p1 − p3)2 and u = (p2 − p3)2 = 2M2

N + 2m2
e − t − s. Denoting

4
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of the Rarita-Schwinger propagator [13], the background spin 1/2 component vanishing when
contracted with the adjacent γN∆ vertices [14]. At present we do not include a width in
the ∆ propagator as its influence on the unpolarised cross section should be small.
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Two-photon exchange amplitude with     intermediate state          !

numerators

spin-3/2 projection operator

to divide dσ by the well-known factor describing the scattering from a structureless “proton”
(see, e. g., [11]) and thus use the reduced cross section

dσR =
[
G2

M(Q2) +
ε

τ
G2

E(Q2)
]
(1 + δN + δ∆) . (1)

Here the Born contribution is written in terms of the electric and magnetic form factors of
the proton, GE(Q2) and GM(Q2), which are functions of the momentum transfer squared
Q2 ≡ −q2 ≡ 4τM2

N = −(p1 − p3)2. The kinematic variable ε is related to the scattering
angle θ through ε = [1 + 2(1 + τ) tan2(θ/2)]−1, which is equal to the photon polarisation in
the Born approximation.

We denote the Born scattering amplitude as MB and the two-photon exchange ampli-
tudes with the nucleon and ∆ intermediate states as Mγγ

N and Mγγ
∆ , respectively. From the

equation dσ = dσB(1 + δN + δ∆) = |MB + Mγγ
N + Mγγ

∆ |2, where dσB = |MB|
2, we derive

to first order in the electromagnetic coupling e2/(4π) ≈ 1/137:

δN,∆ = 2
Re

(
M†

B Mγγ
N,∆

)

|MB|
2 . (2)

The nucleon part δN of the two-photon exchange was analysed in Ref. [6]. Below we will
evaluate the ∆ two-photon exchange contribution δ∆. The scattering amplitude Mγγ

∆ is
given by the sum of the box and crossed-box loop diagrams depicted in Fig. 1.

1
p p

3

p
4

p
2

k q!k
!

FIG. 1: Two-photon exchange box and crossed-box graphs for electron-proton scattering with a ∆

intermediate state, calculated in the present letter.

We use the γN∆ vertex of the following form [12]:

Γνα
γ∆→N(p, q) ≡ iV να

∆in(p, q) = i
eF∆(q2)

2M2
∆

{
g1 [ gναp/q/ − pνγαq/ − γνγαp · q + γνp/qα ]

+g2 [ pνqα − gναp · q ] + (g3/M∆) [ q2(pνγα − gναp/) + qν(qαp/ − γαp · q) ]
}
γ5 T3 , (3)

where M∆ ≈ 1.232 GeV is the ∆ mass, pα and qν are the four-momenta of the incoming ∆
and photon, respectively, and g1, g2 and g3 are the coupling constants.1 An analysis of Eq. (3)
in the ∆ rest frame suggests that g1, g2 − g1 and g3 may be interpreted as magnetic, electric
and Coulomb components, respectively, of the γN∆ vertex. The form factor in Eq. (3)
is necessary for ultraviolet regularisation of the loop integrals evaluated below; we use the
simple dipole form

F∆(q2) =
Λ4

∆

(Λ2
∆ − q2)2 , (4)

1 We use the notation and conventions of Ref. [11] throughout.
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FIG. 9: Rosenbluth determinations of GE/GM including the 2-photon corrections. The polarization

data is from Jones et al. [1] and Gayou et al. [2], and the Rosenbluth determinations without the

two-photon corrections are from [51]. The Rosenbluth GE/GM are based on data from Andivahis

et al. [6]. Some of our points for the Rosenbluth results are slightly offset horizontally for clarity.

The results are shown in Fig. 9. The figure also shows the results of the polarization

transfer measurements, and Rosenbluth results taken from [51], which do not include the

hard two-photon corrections. The polarization results also have radiative corrections, but

the size of them is, as one has learned from Fig. 6, smaller than the dots of the data points.

The solid squares in Fig. 9 show the GE/GM ratios we have extracted with Ref. [6] data and

the two-photon corrections with the gaussian GPD. The results with the modified Regge

GPD are omitted to reduce clutter on the graph; they are about the same as for the gaussian

for Q2 of 2–3 GeV2, and a bit larger at the higher Q2.

For Q2 in the 2–3 GeV2 range, the GE/GM extracted using the Rosenbluth method

including the two-photon corrections agree well with the polarization transfer results. At

higher Q2, there is at least partial reconciliation between the two methods.

One may comment on the growth of the error bars at higher Q2. The calculation with
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FIG. 8: Ratio of e+/e− elastic cross sections on the proton. The GPD calculations for the 2γ

exchange correction are for three fixed Q2 values of 2, 5, and 9 GeV2, for the kinematical range

where −u is above M2. Also shown are all known data, from [48], with Q2 above 1.5 GeV2 (the

missing central value is at 1.111). The numbers near the data give Q2 for that point in GeV2.

F. Rosenbluth determinations of GE/GM including 2-photon corrections

Previous Rosenbluth determinations of GE/GM were made using data which had been

radiatively corrected using the Mo-Tsai [8] or comparable [9] prescription. Given the work

in this paper, we would now say that these corrections are just a part of the total radiative

correction. One should also include the hard two-photon corrections.

We present here new Rosenbluth determinations of Gp
E/Gp

M using known data but in-

cluding the two-photon corrections. We used cross section data from Andivahis et al. [6],

and made a χ2 fit to the data at each of the five Q2 selected using our full calculation and

allowing both Gp
M and Gp

E/Gp
M to vary. We included the lowest ε points in the data by

making a linear extrapolation of our calculations from higher ε. (For the record, and for the

ε’s in question and to the precision we need, the result is numerically the same as doing our

GPD calculation at these ε’s, even though |u| is below M2.)
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FIG. 2: Direct and crossed box diagrams to describe the two-photon exchange contribution to the

lepton-quark scattering process, corresponding with the blob denoted by H in Fig. 1.

integral [31]. This yields,

R
(
f̃ soft

1

)
=

e2

4π2

{
ln

(
λ2

√−ŝû

)
ln

∣∣∣∣ ŝû
∣∣∣∣ +

π2

2

}
, (23)

R
(
f̃hard

1

)
=

e2

4π2

{
1

2
ln

∣∣∣∣ ŝû
∣∣∣∣ +

Q2

4

[
1

û
ln2

∣∣∣∣ ŝ

Q2

∣∣∣∣ − 1

ŝ
ln2

∣∣∣∣ û

Q2

∣∣∣∣ − 1

ŝ
π2

]}
, (24)

where f̃ soft
1 , which contains a term proportional to lnλ2 (λ is an infinitesimal photon mass),

is IR divergent. The amplitude f̃3 resulting from the diagrams of Fig. 2 is IR finite, and its

real part is

R
(
f̃3

)
=

e2

4π2

1

ŝ û

{
ŝ ln

∣∣∣∣ ŝ

Q2

∣∣∣∣ + û ln

∣∣∣∣ û

Q2

∣∣∣∣ +
ŝ − û

2

[
ŝ

û
ln2

∣∣∣∣ ŝ

Q2

∣∣∣∣ − û

ŝ
ln2

∣∣∣∣ û

Q2

∣∣∣∣ − û

ŝ
π2

]}
.

(25)

The correction to the electron-quark elastic cross section can be obtained from Eq. (17),

dσ = dσ1γ

[
1 + 2R

(
f̃1

)
2γ

+ ε
ŝ − û

4
2R

(
f̃3

)
2γ

]
,

≡ dσ1γ (1 + δ2γ) , (26)

where dσ1γ is the cross section in the one-photon exchange approximation and ε =

−2 ŝ û / (ŝ2 + û2) in the massless limit. Using Eqs. (23, 24, 25), we obtain (for eq = +1)

δ2γ =
e2

4π2

{
2 ln

(
λ2

Q2

)
ln

∣∣∣∣ ŝû
∣∣∣∣ (27)

+
(ŝ − û)Q2

2 (ŝ2 + û2)

[
ln2

∣∣∣∣ ŝ

Q2

∣∣∣∣ + ln2

∣∣∣∣ û

Q2

∣∣∣∣ + π2

]
+

Q4

ŝ2 + û2

[
û

Q2
ln

∣∣∣∣ ŝ

Q2

∣∣∣∣ − ŝ

Q2
ln

∣∣∣∣ û

Q2

∣∣∣∣
]}

,

which is in agreement with the corresponding expression for electron-muon scattering ob-

tained in Ref. [32]. The expressions of f̃1 and f̃3 can also be obtained through crossing

from the corresponding expressions of the box diagrams for the process e+e− → µ+µ− as

calculated in Ref. [33].
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JLab E05-017 (Hall C): Improved Rosenbluth data

Reduce TPE uncertainties on GM by factor of 2-3 for all Q
2
,

at or below the experimental uncertainties (if !-dependence known)

Proton detection can give factor of 2-3 improvement over world’s L-T data on GE /
 
GM

   (as demonstrated by E01-001)
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2
 values]

[2-3 times smaller]

Final step: better knowledge of !-dependence of amplitudes

I.A.Qattan, et al., PRL 94, 142301 (2005)

LT-PT comparisons provide "#
TPE

with 50-100% uncertainty

Reduce to 20-30% for Q
2
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1.5-2.0% uncertainty in GM

from extrapolation to !=0
Reduce to <0.5%

At lower Q
2
, positron-electron

comparisons will determine the

size of "#
TPE

Polarization transfer

E05-017 projected

E01-001 results

Previous Rosenbluth results
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J. Arrington

On another planet:  Measure GE/GM using 
Rosenbluth with positron-proton scattering

Would find  square of GE  negative!



• BaBar |GE/GM| measurements vs previous ones 
    and dispersion relation prediction (yellow) based on 

JLab space-like GE/GM and analyticity
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Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp

Introduction

Dispersive approach

Results and conclusions

R(q2)

Reconstructed R in space-like and time-like region

Comparison
BaBar-Lear

q2(GeV 2)

R
(q
2
)

space-like time-like

Simone Pacetti Ratio |Gp
E (q2)/Gp

M (q2)| and dispersion relations

Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp

Introduction

Dispersive approach

Results and conclusions

Space-like and time-like data

q2(GeV 2)

µ p
G

E
(q
2
)

G
M

(q
2
)

TJNAF & MIT-Bates

BaBar

LEAR

FENICE+DM2

E835

Th. Constraints
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The ratio

R(q2) = µp
GE (q2)

GM(q2)

Theoretical constraints

R(0) = 1 R(4M2
N) = µp

Simone Pacetti Ratio |Gp
E (q2)/Gp

M (q2)| and dispersion relations

Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp

Introduction

Dispersive approach

Results and conclusions

Asymptotic value and space-like zero

Real asymptotic values for R

RBaBar(∞) =2.65± 0.55 = (0.95± 0.20)µp

RLear(∞) =6.4± 1.9 = (2.3± 0.7)µp

BaBar in agreement
with the scaling law
|GE | " |GM | but with

opposite sign

Asimptotic behaviour of F2/F1

lim
s→∞

s

4M2
N

F2
F1

=
R(∞)

µp
−1 =

 −0.05± 0.20 BaBar

1.3± 0.7 Lear

F2/F1 decreases like
(1/s) (Lear) or faster
(BaBar) as s diverges

Space-like zero

The analysis foresees, in a model-independent
way, the presence of a space-like zero t0 for R

tBaBar0 =(−10± 1) GeV 2

tLear0 =(−7.9± 0.7) GeV 2

BaBar only!

In spite of this the
asymptotic scaling law
seems preserved

Simone Pacetti Ratio |Gp
E (q2)/Gp

M (q2)| and dispersion relations
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Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp

Introduction

Dispersive approach

Results and conclusions

Asymptotic GE(q2)/GM(q2)

Asymptotic behaviour of R and comparison with some existing models

Comparison
BaBar-Lear
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GE (q2)/GM(q2) |R(q2)|

Simone Pacetti Ratio |Gp
E (q2)/Gp

M (q2)| and dispersion relations
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Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp
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Remarks on two-photon correction
Need to check against all data on Compton
amplitude

γp → γp, γγ → pp,
including large s, t

DVCS:
γ∗p → γp

γ∗γ∗ → pp

γ∗ → ppγ

Need to check against all data on Compton
amplitude

γp → γp, γγ → pp,
including large s, t

DVCS:
γ∗p → γp

γ∗γ∗ → pp

γ∗ → ppγ

Compton: γp→ γp at large s, t

Difference of hfs in hydrogen (e−p)
and muonium (e−µ+).

Hiller, Carlson,Huang, sjb

Presently only models: handbag parton model,
nucleons plus resonances

Hiller, Carlson, Huang, sjb

Cannot use Feynman propagator
for composite spin-1/2 systems
e.g. He+(e−α)

Need to combine models

Measure e±p Charge asymmetry

Interference of (C = +)
e+e− → γ∗γ∗ → H+H−
and (C = −)
e+e− → γ∗ → H+H−

Cannot use Feynman propagator
for composite spin-1/2 systems
e.g. He+(e−α)

Need to combine
parton-based and hadron-based models

Measure e±p Charge asymmetry

Interference of (C = +)
e+e− → γ∗γ∗ → H+H−
and (C = −)

Need to combine parton-based and hadron-based models
Mechanism for low energy 

theorem for composite systems
Primack, sjb

Need to check input against all data on Compton amplitude
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BELLE
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Wγγ  (GeV)

σ(
γγ

→
pp− )  

(n
b)
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conserved amplitudes
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2.5 < Wγγ < 3.0 GeV

CLEO
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Baryon Regge exchange
s >>- t, -u
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Lepage & sjb

Crucial test:  neutral suppression
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Fig. 5. Cross section for (a) γγ→π+π−, (b) γγ→K+K− in the c.m. angular region
|cos θ∗| < 0.6 together with a W−6 dependence line derived from the fit of s|RM |.
(c) shows the cross section ratio. The solid line is the result of the fit for the data
above 3 GeV. The errors indicated by short ticks are statistical only.

6 Systematic errors

The dominant systematic errors are listed in Table 2. The uncertainty due
to trigger efficiency is estimated by comparing the yields of γγ → µ+µ− in
real and simulated data [9] after accounting for the background from e+e− →
µ+µ− nγ events (varying with W from 0.5–4.6%), which have the same topol-
ogy [13]. The uncertainty in the relative muon identification efficiency between
real and simulated data is used to determine the error associated with the
residual µ+µ− subtraction from the π+π− sample. We use an error of 100% of
the subtracted value for the non-exclusive background subtraction. We allow
the number of χcJ events to fluctuate by up to 20% of the measured excess to
estimate the error due to the χc subtraction that is applied for the energy bins
in the range 3.3 GeV < W < 3.6 GeV. The total W -dependent systematic
error is 10–33% (10–21%) for the γγ → π+π− (γγ → K+K−) cross section.

11

PQCD, AdS/CFT:
Δσ(γγ→ π+π−,K+,K−)∼ 1/W 6

|cos(θCM)| < 0.6

Hard Exclusive Processes:
 Fixed angle

Two Photon Reactions
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Fig. 4. Angular dependence of the cross section, σ−1
0 dσ/d|cos θ∗|, for

the π+π−(closed circles) and K+K−(open circles) processes. The curves are
1.227 × sin−4 θ∗. The errors are statistical only.

dσ

d|cos θ∗|(W, |cos θ∗|; γγ → X ) =
∆N(W , |cos θ∗|; e+e− → e+e−X )

Lγγ(W )∆W ∆|cos θ∗|ε(W , |cos θ∗|)∫Ldt
(2)

where N and ε denote the number of the signal events and a product of de-
tection and trigger efficiencies, respectively;

∫Ldt is the integrated luminosity,
and Lγγ is the luminosity function, defined as Lγγ(W ) = dσ

dW
(W ; e+e− →

e+e−X)/σ(W ; γγ→X).

The efficiencies ε(W, |cos θ∗|) for γγ → π+π− and γγ → K+K− are obtained
from a full Monte Carlo simulation [11], using the TREPS [12] program for
the event generation as well as the luminosity function determination. The
trigger efficiency is determined from the trigger simulator. The typical value
of the trigger efficiency is ∼ 93% for events in the acceptance.

The efficiency-corrected measured differential cross sections for γγ → π+π−

and γγ → K+K−, normalized to the partial cross section σ0 for |cosθ∗| < 0.6,
are shown in Fig. 4 for each 100 MeV wide W bin. The partial cross sections
σ0 for both processes, integrated over the above scattering angle range, are
shown in Fig. 5 (along with their ratio) and itemized in Table 1.

10

Abstract

We have measured π+π− and K+K− production in two-photon collisions using
87.7 fb−1 of data collected with the Belle detector at the asymmetric energy e+e−

collider KEKB. The cross sections are measured to high precision in the two-photon
center-of-mass energy (W ) range between 2.4GeV < W < 4.1GeV and angular
region |cos θ∗| < 0.6. The cross section ratio σ(γγ → K+K−)/σ(γγ → π+π−) is
measured to be 0.89 ± 0.04(stat.) ± 0.15(syst.) in the range of 3.0GeV < W <
4.1GeV, where the ratio is energy independent. We observe a sin−4 θ∗ behavior of
the cross section in the same W range. Production of χc0 and χc2 mesons is observed
in both γγ → π+π− and γγ → K+K− modes.

Key words: two-photon collisions, mesons, QCD, charmonium
PACS: 12.38Qk, 13.25.Gv, 13.66.Bc, 13.85.Lg

1 Introduction

Exclusive processes with hadronic final states test various model calculations
motivated by perturbative or non-perturbative QCD. Two-photon production
of exclusive hadronic final states is particularly attractive due to the absence of
strong interactions in the initial state and the possibility of calculating γγ →
qq amplitudes. The perturbative QCD calculation by Brodsky and Lepage
(BL) [1] is based on factorization of the amplitude into a hard scattering
amplitude for γγ → qq̄qq̄ and a single-meson distribution amplitude. Their
prediction gives the dependence on the center-of-mass (c.m.) energy W (≡√

s)
and scattering angle θ∗ for γγ → M+M− processes

dσ

d|cos θ∗|(γγ → M+M−) ≈ 16πα2

s

|FM(s)|2
sin4 θ∗

, (1)

where M represents a meson and FM denotes its electromagnetic form factor.
Vogt [2], based on the perturbative approach, claimed a need for soft contribu-
tions, as his result for the hard contribution was well below the experimental
cross section obtained by CLEO [3].

Diehl, Kroll and Vogt (DKV) proposed [4] the soft handbag contribution to
two-photon annihilation into pion or kaon pairs at large energy and momentum
transfers, in which the amplitude is expressed by a hard γγ → qq subprocess
and a form factor describing the soft transition from qq to the meson pair.

1 on leave from Nova Gorica Polytechnic, Nova Gorica, Slovenia

4

PQCD:

Crucial test:  
neutral 

suppression
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σ(e−p→ e−p)

σ(e+p→ e+p)

Afanasev, Carlson, Chen, Vanderhaeghen, sjb

Predictions for the electron-proton/ positron-
proton asymmetry

Interference of one-photon and two-photon
exchange
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Transverse Asymmetries in Elastic Electron

Nucleon Scattering and the Imaginary Part of the

Two-Photon Amplitude
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Comparison of A⊥ with Model Calculations
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Beam Spin Normal Asymmetries in Elastic Scattering

- Single-Spin-Asymmetries: e− Spin longitudinal,
Parity Violating, !-symmetric

APV = 10−6
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Observables

- 1-Photon forbidden Transitions in Nuclear States

- Elastic Cross Section Measurement (Real Part, Correction to

1-Photon)

- !e−p - !e+p (Real Part, Correction to 1-Photon)

- "-Dependence (at fixed Q2) (Real Part, Correction to 1-Photon)

- Recoil Polarization Px,Py,Pz (Real Part,Imaginary Part)

- Transverse Target Spin Asymmetry (Imaginary Part, forbidden in

1-Photon)

- Transverse Beam Spin Asymmetry (Imaginary Part, only in

2-Photon)

F.M., 12.10.2005 – p. 6/38

Data: Mainz



Timelike proton form factor data

Historical 
ref: Zichichi,
Berman, 
Cabibbo

ISR 
technique

Kuhn et al
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Diego Bettoni Timelike Form Factors

BaBar Measurement using ISR

BaBar measurement very
near threshold confirms 
steep rise of Form Factor

Steep behavior at threshold also seen in other processes
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M=1859              MeV/c2

Γ < 30 MeV/c2 (90% CL)

J/ψγpp

M(pp)-2mp (GeV)
0 0.1 0.2 0.3

3-body phase space
acceptance

χ2/dof=56/56

fitted peak 
location

acceptance 
weighted BW  +3    +5

−10  −25

Threshold Enhancement observed by BES



•Negative step at w ~ 2.2 GeV (!?)
 Speculations:
•Strong resonances interference ?
•a new (inelastic) amplitude: 
 opening of baryonic excitations?  

Baldini



Diego Bettoni Timelike Form Factors 74

Possible Explanations
• Tail of a narrow resonance below threshold (baryonium ?).
• Dominance of π exchange in pp final state interaction.
• Underestimation of the Coulomb correction factor.

Possible test for baryonium: a vector meson with very small coupling to 
e+e- (and relatively small hadronic width), lying on top of a ρ/ω
recurrence, should show up as a dip in some hadronic cross section.

Baldini
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Resonant 
Structures

The dip in the total 
multihadronic cross section 
and  the steep variation of 
the proton form factor near 
threshold may be fitted with 

a narrow vector meson 
resonance, with a mass 

M ∼1.87 GeV and a width 
Γ ∼ 10-20 MeV, consistent 
with an N N bound state.
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• Dip observed in 6 π 
diffractive photoproduction 
by E687 at Fermilab

• New results from Babar 
expected soon
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Do we see NFF in e+e!" hadrons in

ISR study at BaBar?

                           E. Solodov

                       BINP Novosibirsk

              Representing BaBar collaboration
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Cross section fit for 3(!+!"), 2(!+!")!0!0

Cross section is

described as:

 (N.N.Achasov, hep-

ph/9609216)
AV1 - Jacob-Slansky

model for the continuum.

#0 = 0.12 ± 0.03 nb

m1= 1.88 ± 0.05 GeV/c2

$1 = 0.13 ± 0.03 GeV

%1 = 21 ± 40 deg.
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#0 = 0.46 ± 0.10 nb

m1= 1.86 ± 0.02 GeV/c2

$1 = 0.16 ± 0.02 GeV

%1 =  -3 ± 15 deg.

The dip is not well described by single BW !
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80 
events

The neutron form factor is bigger than that of the proton !!!

Neutron Timelike Form Factor

Only one measurement:
    FENICE at ADONE
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Coulomb Correction

e
+

e
– 

H
+

H
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!*

!

11-2003 

8680A2

Sommerfeld, Schwinger
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C is the Coulomb correction factor, taking into account the QED 
coulomb interaction. Important at threshold. 

σ finite

There is no Coulomb correction in the neutron case.




