# Features of HolographicModel

de Teramond sjb

- Ratio of proton to Delta trajectories= ratio of zeroes of Bessel functions.
- One scale  $\Lambda_{\rm QCD}$  determines hadron spectrum (slightly different for mesons and baryons)
- Only quark-antiquark, qqq, and g g hadrons appear at classical level
- Covariant version of bag model: confinement+conformal symmetry

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

# New Perspectives in QCD from AdS/CFT

- Need to understand QCD at the Amplitude Level: hadron wavefunctions!
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space
- Impact of ISI and FSI: Single Spin Asymmetries, Diffractive Deep Inelastic Scattering, Shadowing, Antishadowing

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

#### John Arrington

### Rosenbluth extractions of $G_E$ and $G_M$

In the Born approximation:



Studies of two-photon effects ('50s and '60s)

John Arrington

**Definitive test:** Positron-proton scattering vs. electron-proton scattering

![](_page_3_Figure_3.jpeg)

However: Low luminosity of secondary  $e+/\mu$  beams meant that precise limits were only available for low  $Q^2$  and/or small scattering angles

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

# $G_E/G_M$ from Polarization Transfer

Use polarized electron beam, unpolarized proton target, measure the polarization transferred to the struck proton

$$P_{L} = M_{p}^{-1} (E+E') \sqrt{\tau(1+\tau)} G_{M}^{2} \tan^{2}(\theta_{e}/2)$$

 $\mathbf{P}_{\mathrm{T}} = 2 \sqrt{\tau(1+\tau)} \ \mathbf{G}_{\mathrm{E}} \mathbf{G}_{\mathrm{M}} \tan(\theta_{\mathrm{e}}/2)$ 

 $\mathbf{P}_{\mathbf{N}} = \mathbf{0}$ 

$$\boxed{\frac{G_E}{G_M} = -\frac{P_T}{P_L} \frac{(E+E') \tan(\theta_e/2)}{2M_p}}$$

### Polarization along *q*

Polarization perpendicular to q (in the scattering plane)

Polarization normal to scattering plane

N. Dombey, Rev. Mod. Phys. 41, 236 (1969)

 $G_E/G_M$  goes like *ratio* of two components

- --> insensitive to absolute polarization, analyzing power
- --> less sensitive to radiative corrections

Comparison of different electron polarizations --> cancellation of false asymmetries

Also useful for neutron (where  $G_E \ll G_M$ , so L-T very difficult)

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

## G<sub>E</sub>/G<sub>M</sub> from Polarization Transfer

![](_page_5_Figure_1.jpeg)

**<u>Surprising result:</u>**  $\mu_p G_E \neq G_M$  at large  $Q^2$ 

Predicted by Iachello!

-Renewed interest in nucleon form factors, nucleon structure

- -New examination of long-standing pQCD predictions
- -Highlighted the role of relativity, angular momentum
- -Generated interest outside of the field

Articles in Science News, Physics Today, New York Times, USA Today, etc...

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

### **Proton** $G_E/G_M$ **Ratio**

![](_page_6_Figure_1.jpeg)

$$\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$
$$\tau = Q^2/4M^2$$
$$\varepsilon = \left[1 + 2(1+\tau)\tan^2\theta/2\right]^{-1}$$

 $G_E/G_M$  from slope in  $\varepsilon$  plot

$$\frac{G_E}{G_M} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$$

 $P_{T,L}$  polarization of recoil proton

Wally Melnitchouk

- Polarization transfer Jlab measurement of spacelike form factor: G<sub>E</sub>/G<sub>M</sub> decreasing; revolution!
- Time-like data from Babar: G<sub>E</sub>/G<sub>M</sub> increasing
- Rosenbluth unreliable
- G<sub>E</sub>-G<sub>M</sub> scaling wrong
- Possible problem for PQCD

![](_page_7_Figure_5.jpeg)

• Two-Photon exchange to the rescue. Resonance model vs. parton handbag -- need both even to get Thomson limit, LET

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

### Arrington

#### P. Blunden, W. Melnitchouk, and J. Tjon, PRL 91 142304 (2003)

-Improved calculation of box diagrams, (unexcited intermediate state only)

#### Chen, Afanasev, Brodsky, Carlson, Vanderhaeghen: PRL 93 122301 (2004)

![](_page_8_Figure_4.jpeg)

Consistent with e+/e- ratios and observed form factor discrepancy

Other relevant works: P.A.M. Guichon and M. Vanderhaeghen, PRL 91, 142302 (2003) -Generalized formalism for elastic scattering beyond Born approximation

M. Rekalo and E. Tomasi-Gustafsson, EPJ A22, (2004);
E. Tomasi-Gustafsson, F. Lacroix, C. Duterte, G.I. Gakh, EPJ A24 (2005)
-Model-independent properties, connection of time-like and space-like regimes

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

![](_page_9_Picture_0.jpeg)

+ J.Tjon (Maryland/JLab), P. Blunden, S. Kondratyuk (Manitoba)

![](_page_9_Figure_2.jpeg)

Two-photon exchange amplitude with  $\Delta$  intermediate state

![](_page_9_Figure_4.jpeg)

# But: Cannot use Dirac/Feynman propagator Contains Delta Delta Delta intermediate state with full strength

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

#### Afanasev, Carlson, Chen, Vanderhaeghen, sjb

![](_page_10_Figure_1.jpeg)

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

### JLab E05-017 (Hall C): Improved Rosenbluth data

Proton detection can give factor of 2-3 improvement over world's L-T data on  $G_E/G_M$ 

![](_page_12_Figure_2.jpeg)

Reduce TPE uncertainties on  $G_M$  by factor of 2-3 for all  $Q^2$ , *at or below the experimental uncertainties* (if  $\varepsilon$ -dependence known)

Final step: better knowledge of  $\varepsilon$ -dependence of amplitudes

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

On another planet: Measure GE/GM using Rosenbluth with positron-proton scattering

![](_page_13_Figure_1.jpeg)

# On another planet: Measure G<sub>E</sub>/G<sub>M</sub> using Rosenbluth with positron-proton scattering

J. Arrington

![](_page_14_Figure_2.jpeg)

Would find square of G<sub>E</sub> negative!

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

 BaBar |G<sub>E</sub>/G<sub>M</sub>| measurements vs previous ones and dispersion relation prediction (yellow) based on JLab space-like G<sub>E</sub>/G<sub>M</sub> and analyticity

![](_page_15_Figure_1.jpeg)

# Simone Pacetti Ratio $|G_E^p(q^2)/G_M^p(q^2)|$ and dispersion relations

Reconstructed R in space-like and time-like region

 $R(q^2)$ 

![](_page_16_Figure_2.jpeg)

Asymptotic behaviour of *R* and comparison with some existing models

![](_page_17_Figure_1.jpeg)

Simone Pacetti

**Ratio**  $|G_F^{\rho}(q^2)/G_M^{\rho}(q^2)|$  and dispersion relations

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

Stan Brodsky, SLAC

58

## Asymptotic value and space-like zero

#### Real asymptotic values for R

 $egin{aligned} & {\cal R}_{ extsf{BaBar}}(\infty) = & 2.65 \pm 0.55 = (0.95 \pm 0.20) \mu_{
ho} \ & {\cal R}_{ extsf{Lear}}(\infty) = & 6.4 \pm 1.9 = (2.3 \pm 0.7) \mu_{
ho} \end{aligned}$ 

BaBar in agreement with the scaling law  $|G_E| \simeq |G_M|$  but with opposite sign

#### Asimptotic behaviour of $F_2/F_1$

$$\lim_{s \to \infty} \frac{s}{4M_N^2} \frac{F_2}{F_1} = \frac{R(\infty)}{\mu_p} - 1 = \begin{cases} -0.05 \pm 0.20 & \text{BaBar} \\ 1.3 \pm 0.7 & \text{Lear} \end{cases}$$

 $F_2/F_1$  decreases like (1/s) (Lear) or faster (BaBar) as s diverges

#### Space-like zero

The analysis foresees, in a model-independent way, the presence of a space-like zero  $t_0$  for R $t_0^{\text{BaBar}} = (-10 \pm 1) \text{ GeV}^2$  $t_0^{\text{Lear}} = (-7.9 \pm 0.7) \text{ GeV}^2$ 

#### BaBar only!

In spite of this the asymptotic scaling law seems preserved

![](_page_18_Picture_11.jpeg)

Simone PacettiRatio  $|G_E^p(q^2)/G_M^p(q^2)|$  and dispersion relationsFrascati Nucleon05<br/>IO-I4-05New Perspectives on the Nucleon in QCDStan Brodsky, SLAC

# Remarks on two-photon correction

## Need to check input against all data on Compton amplitude

 $\gamma p \to \gamma p \text{, } \gamma \gamma \to p \overline{p} \text{,}$  including large s,t

DVCS:  

$$\gamma^* p \rightarrow \gamma p$$
  
 $\gamma^* \gamma^* \rightarrow p\overline{p}$   
 $\gamma^* \rightarrow p\overline{p}\gamma$ 

![](_page_19_Figure_4.jpeg)

Hiller, Carlson, Huang, sjb

Difference of hfs in hydrogen  $(e^-p)$ and muonium  $(e^-\mu^+)$ .

Measure  $e^{\pm}p$  Charge asymmetry

### Need to combine parton-based and hadron-based models

Cannot use Feynman propagator for composite spin-1/2 systems e.g.  $He^+(e^-\alpha)$ 

Mechanism for low energy theorem for composite systems

Primack, sjb

Frascati Nucleono5 10<sup>-</sup>14<sup>-</sup>05 New Perspectives on the Nucleon in QCD

# Study of $\gamma \gamma \rightarrow p \bar{p}$ Production at Belle

Chen-Cheng Kuo (Belle Collaboration)

![](_page_20_Figure_2.jpeg)

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

Stan Brodsky, SLAC

61

### Measured Cross Sections for $\gamma\gamma \to p\bar{p}$

![](_page_21_Figure_1.jpeg)

| fitted $n$                    | range of $W_{\gamma\gamma}$ (GeV) |
|-------------------------------|-----------------------------------|
| $15.1\substack{+0.8 \\ -1.1}$ | 2.5 – 2.9                         |
| $12.4^{+2.4}_{-2.3}$          | 3.2–4.0                           |

• Steeper fall in  $W_{\gamma\gamma}$  than pQCD n = 10(n = 10 not rejected for  $W_{\gamma\gamma} > 3.2$  GeV)

Decreasing n in  $W_{\gamma\gamma}$ (indication of a transition to asymptotic predictions)

 $(\eta_c \text{ contribution included})$ 

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

![](_page_22_Figure_0.jpeg)

♦ Ascending trend is a general feature of pQCD due to the hard scattering amplitude:  $\frac{d\sigma}{d|\cos \theta^*|} \propto \frac{1}{tu} \propto \frac{1}{1-\cos^2 \theta^*}$ 

- + Handbag contribution with  $R_V^p$  neglected:  $\frac{d\sigma}{d|\cos\theta^*|} \propto \frac{1}{1-\cos^2\theta^*}$
- + Steeper enhancement of data at higher  $|\cos \theta^*|$  must be explained

Baryon Regge exchange s >>- t, -u

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

Fig. 5. Cross section for (a)  $\gamma\gamma \rightarrow \pi^+\pi^-$ , (b)  $\gamma\gamma \rightarrow K^+K^-$  in the c.m. angular region  $|\cos \theta^*| < 0.6$  together with a  $W^{-6}$  dependence line derived from the fit of  $s|R_M|$ . (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV. The errors indicated by short ticks are statistical only.

Frascati Nucleon05 New Perspectives on the Nucleon in QCD 10<sup>-</sup>14<sup>-</sup>05 65

![](_page_25_Figure_0.jpeg)

Angular dependence of the cross section,  $\sigma_0^{-1} d\sigma/d |\cos \theta^*|$ , for the  $\pi^+\pi^-$ (closed circles) and  $K^+K^-$ (open circles) processes. The curves are  $1.227 \times \sin^{-4} \theta^*$ . The errors are statistical only.

Measurement of the  $\gamma\gamma \rightarrow \pi^+\pi^-$  and  $\gamma\gamma \rightarrow K^+K^-$  processes at energies of 2.4–4.1 GeV Crucial test: neutral suppression Stan Brodsky, SLAC

66

New Perspectives on the Nucleon in QCD

Frascati Nucleono5

10-14-05

Belle Collaboration

![](_page_26_Figure_0.jpeg)

FIG. 5: Nucleon analyzing power, which is equal to normal recoil polarization. The elastic contribution (nucleon intermediate state in the two-photon exchange box diagram) is shown by the dotted curve [27]. The GPD calculation for the inelastic contribution is shown by the dashed curve for the gaussian GPD, and by the solid curve for the modified Regge GPD. The GPD calculation is cut off in the backward direction at  $-u = M^2$ . In the forward direction the modified Regge GPD result goes down to  $Q^2 = 2 \text{ GeV}^2$  and the gaussian GPD result to  $Q^2 = M^2$ .

Afanasev, Carlson, Chen, Vanderhaeghen, sjb

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

### Transverse Asymmetries in Elastic Electron Nucleon Scattering and the Imaginary Part of the Two-Photon Amplitude

Frank E.Maas

- Single-Spin-Asymmetries:  $e^-$  Spin transverse
- Transverse Beam Spin Asymmetry (Imaginary Part, only in

![](_page_27_Figure_4.jpeg)

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

Stan Brodsky, SLAC

р

e

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

Fig. 5. Total cross section  $e^+e^- \rightarrow p\bar{p}$  as measured in two different energy regions.

Frascati Nucleon05<br/>IO-I4-05New Perspectives on the Nucleon in QCDStan Brodsky, SLAC

# BaBar Measurement using ISR

![](_page_30_Figure_1.jpeg)

Steep behavior at threshold also seen in other processes

Diego Bettoni

**Timelike Form Factors** 

# Threshold Enhancement observed by BES

![](_page_31_Figure_1.jpeg)

- •Negative step at w ~ 2.2 GeV (!?) Speculations:
- Strong resonances interference ?
  a new (inelastic) amplitude: opening of baryonic excitations?

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

#### Baldini

# **Possible Explanations**

- Tail of a narrow resonance below threshold (baryonium ?).
- Dominance of  $\pi$  exchange in  $\overline{p}p$  final state interaction.
- Underestimation of the Coulomb correction factor.

Possible test for baryonium: a vector meson with very small coupling to  $e^+e^-$  (and relatively small hadronic width), lying on top of a  $\rho/\omega$  recurrence, should show up as a dip in some hadronic cross section.

![](_page_33_Figure_5.jpeg)

# Resonant Structures

The dip in the total multihadronic cross section and the steep variation of the proton form factor near threshold may be fitted with a narrow vector meson resonance, with a mass M~1.87 GeV and a width  $\Gamma \sim 10-20$  MeV, consistent with an  $N\overline{N}$  bound state.

![](_page_34_Figure_2.jpeg)

- Dip observed in 6 π diffractive photoproduction by E687 at Fermilab
- New results from Babar expected soon

![](_page_35_Figure_2.jpeg)

# E. Solodov

# BINP Novosibirsk Representing BaBar collaboration

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \frac{\sigma_0(s(1-x))}{\sigma_0(s(1-x))},$$

$$W(s,x,\theta) = \frac{\alpha}{\pi x} \left( \frac{2-2x+x^2}{\sin^2\theta} - \frac{x^2}{2} \right), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$
e
$$(x,x,\theta) = \frac{\alpha}{\pi x} \left( \frac{2-2x+x^2}{\sin^2\theta} - \frac{x^2}{2} \right), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

# Cross section fit for $3(\pi^+\pi^-)$ , $2(\pi^+\pi^-)\pi^0\pi^0$

![](_page_37_Figure_1.jpeg)

The dip is not well described by single BW !

October 14, 2005

E.Solodov Workshop on NFF

# Neutron Timelike Form Factor

![](_page_38_Figure_1.jpeg)

### The neutron form factor is bigger than that of the proton !!!

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} CD = \frac{\alpha^2 \beta}{4s} C\left[ |G_M|^2 \left(1 + \cos^2\theta\right) + \frac{1}{\tau} |G_E|^2 \sin^2\theta \right]$$

![](_page_39_Figure_1.jpeg)

Sommerfeld, Schwinger

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

C is the Coulomb correction factor, taking into account the QED coulomb interaction. Important at threshold.

![](_page_40_Figure_1.jpeg)

There is no Coulomb correction in the neutron case.

Diego Bettoni

**Timelike Form Factors**