New Perspectives on the Structure and Interactions of the Nucleon in QCD

Workshop on Nucleon Form **Factors** Frascati, 12-14 October, 2005

"Unique Form of Continuity in Space" by Umberto Boccioni

Frascati Nucleon05

10-14-05

New Perspectives on the Nucleon in QCD

Nucleon Form Factors

Nucleon current operator (Dirac & Pauli)

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_1(q^2) + \frac{i}{2M_N} \sigma^{\mu\nu} q_{\nu} F_2(q^2)$$

Electric and Magnetic Form Factors

$$\begin{array}{l} G_E(q^2) = F_1(q^2) + \tau F_2(q^2) \\ G_M(q^2) = F_1(q^2) + F_2(q^2) \end{array} \tau = \frac{q^2}{4M_N^2} \end{array}$$

 e^{-} e^{+} θ^{+}

___e__

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \sqrt{1 - 1/\tau}}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right]$$

Simone Pacetti

Ratio $|G_{E}^{p}(q^{2})/G_{M}^{p}(q^{2})|$ and dispersion relations

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

Proton Form Factors: Central objects in hadron physics

- Dynamics and structure of proton at the amplitude level: multiquark and gluon system, meson cloud
- Fundamental test of QCD: quark and gluon structure of matter, confinement
- Underlies nuclear physics
- Critical to precision atomic physics: Lamb Shift, Hfs. (See J. Hiller talk). Input to g-2

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

Proton Form Factors: Central objects in hadron physics

- High momentum behavior: Fundamental tests of PQCD scaling, helicity structure, asymptotic freedom, conformal scaling, AdS/CFT
- Pauli form factor: requires nonzero orbital angular momentum
- Information on shape and normalization of proton distribution amplitude -- proton decay!
- Normalization of PQCD: QCD coupling at small scales, evidence for IR fixed point

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

How can we compute proton form factors from first principles?

- Lattice gauge theory
- Transverse lattice
- Discretized light-cone quantization: diagonalize LF Hamiltonian -- LFWFs, spectrum

• AdS/CFT

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

Compute LFWFS from first principles

$$H_{LC}^{QCD} = P_{\mu}P^{\mu} = P^{-}P^{+} - \vec{P}_{\perp}^{2}$$

The hadron state $|\Psi_h\rangle$ is expanded in a Fockstate complete basis of non-interacting nparticle states $|n\rangle$ with an infinite number of components

$$\left|\Psi_{h}(P^{+},\vec{P}_{\perp})\right\rangle =$$

$$\sum_{n,\lambda_i} \int [dx_i \ d^2 \vec{k}_{\perp i}] \psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)$$

$$\times |n: x_i P^+, x_i \vec{P}_\perp + \vec{k}_{\perp i}, \lambda_i \rangle$$

$$\sum_{n} \int [dx_i \ d^2 \vec{k}_{\perp i}] \ |\psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)|^2 = 1$$
Insights for QCD
Step Band

Rome Colloquium 10-11-05

from AdS/CFT

$$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$$

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT 8

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

 $\psi(x, k_{\perp})$

 $x_i = \frac{k_i^+}{P^+}$

 $H_{LE}^{QCD}|\psi > = M^2|\psi >$

Invariant under boosts. Independent of P^{μ}

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

A Unified Description of Hadron Structure

Gardner, Hwang, sjb,

Light-Cone Wavefunction Representations of Anomalous Magnetic Moment and Electric Dipole Moment

In the case of a spin- $\frac{1}{2}$ composite system, the Dirac and Pauli form factors $F_1(q^2)$ and $F_2(q^2)$, electric dipole moment form factor $F_3(q^2)$ are defined by

$$\langle P'|J^{\mu}(0)|P\rangle = \overline{U}(P') \left[F_1(q^2)\gamma^{\mu} + F_2(q^2)\frac{i}{2M}\sigma^{\mu\alpha}q_{\alpha} + F_3(q^2)\frac{-1}{2M}\sigma^{\mu\alpha}\gamma_5 q_{\alpha} \right] U(P) , \quad (47)$$

Dirac and Pauli form factors computed from matrix element of J^+

$$F_1(q^2) = \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle = \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle , \qquad (48)$$

$$\frac{F_2(q^2)}{2M} = \frac{1}{2} \left[\left. + \frac{1}{-q^1 + \mathrm{i}q^2} \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle + \frac{1}{q^1 + \mathrm{i}q^2} \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle \right], \tag{49}$$

$$\frac{F_3(q^2)}{2M} = \frac{i}{2} \left[\left. + \frac{1}{-q^1 + \mathrm{i}q^2} \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle - \frac{1}{q^1 + \mathrm{i}q^2} \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle \right].$$

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Stan Brodsky, SLAC

(50)

Dirac and Pauli form factors exactly computed from convolutions of LFWFs (n'= n) Drell Yan, West, Drell, SJB

$$\begin{split} \frac{F_2(q^2)}{2M} &= \sum_a \int \frac{\mathrm{d}^2 \vec{k}_\perp \mathrm{d} x}{16\pi^3} \sum_j e_j \; \frac{1}{2} \; \times \\ &\left[\; + \frac{1}{-q^1 + \mathrm{i}q^2} \psi_a^{\uparrow *}(x_i, \vec{k}'_{\perp i}, \lambda_i) \; \psi_a^{\downarrow}(x_i, \vec{k}_{\perp i}, \lambda_i) \; + \frac{1}{q^1 + \mathrm{i}q^2} \psi_a^{\downarrow *}(x_i, \vec{k}'_{\perp i}, \lambda_i) \; \psi_a^{\uparrow}(x_i, \vec{k}_{\perp i}, \lambda_i) \; \right] \end{split}$$
Drell, sjb,

$$\begin{split} \frac{F_3(q^2)}{2M} &= \sum_a \int \frac{\mathrm{d}^2 \vec{k}_\perp \mathrm{d}x}{16\pi^3} \sum_j e_j \; \frac{i}{2} \; \times & \text{Gardner, Hwang, sjb,} \\ \left[\; + \frac{1}{-q^1 + \mathrm{i}q^2} \psi_a^{\uparrow *}(x_i, \vec{k}'_{\perp i}, \lambda_i) \; \psi_a^{\downarrow}(x_i, \vec{k}_{\perp i}, \lambda_i) - \frac{1}{q^1 + \mathrm{i}q^2} \psi_a^{\downarrow *}(x_i, \vec{k}'_{\perp i}, \lambda_i) \; \psi_a^{\uparrow}(x_i, \vec{k}_{\perp i}, \lambda_i) \; \right] \,, \end{split}$$

Pauli form factor requires nonzero L

 $\vec{k}'_{\perp i} = \vec{k}_{\perp i} + (1 - x_i)\vec{q}_{\perp} \quad \text{struck quark} \quad \vec{k}'_{\perp i} = \vec{k}_{\perp i} - x_i\vec{q}_{\perp} \quad \text{spectator}$ Rome Colloquium IO-II-05 $\qquad \qquad \text{Insights for QCD}_{\text{from AdS/CFT}} \quad \text{Stan Brodsky, SLAC}$ Relation between edm and anomalous magnetic moment

CP-violating phase $F_3(q^2) = F_2(q^2) \times \tan \phi$

Fock state by Fock state

Gardner, Hwang, sjb,

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Annihilation amplitude needed for Lorentz Invariance

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

 $\left< p'\,\lambda' \right| J^{\mu}\left(z\right)\,J^{\nu}(0)\left|p\,\lambda\right>$

 $\sqrt{2}$

、р'

p'

 Ψ_n

λ ~ κ

 Ψ_n

 $ightarrow \Sigma$

+

n

р

 Ψ_{n+2}

 Ψ_n

$$\gamma^* p \to \gamma p'$$

Given LFWFs, compute all GPDs !

ERBL Evolution

New Perspectives on the Nucleon in QCD

Deeply Virtual Compton Scattering

n = n' + 2

Required for Lorentz Invariance Stan Brodsky, SLAC

Angular Momentum on the Light-Front

Conserved LF Fock state by Fock State

$$l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)$$

n-1 orbital angular momenta

Pauli form factor requires nonzero L

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Form Factors $l p \rightarrow l' p' \langle p' \lambda' | J^+ (0) | p \lambda \rangle$ Zq $F_{\lambda\lambda'}$ (Q²) = \sum_{n} x, $\vec{k_{\parallel}}$ x, $\vec{k_{\perp}} + \vec{q_{\perp}}$ p+q, λ' **p**, λ ψ_n Ψ_{n} Lepage, SJB Efremov, Radyuskin Factorization Chernyak, Zhitnitsky X₁_ Large Q² ΙH $T_{H} = \sum x_{2}$ У₂ X3 y₂ $= \frac{\alpha_s^2}{Q^4} f(x_i, y_i,)$ p, λ 🛛 p+q, $\lambda'=\lambda$ Scaling Laws from PQCD or AdS/CFT Frascati Nucleono5 New Perspectives on the Nucleon in QCD Stan Brodsky, SLAC

18

10-14-05

PQCD and Exclusive Processes Lepage, SJB Efremov, Radyuskin Chernyak, Zhitnitsky $M = \int \prod dx_i dy_i \phi_F(x, \tilde{Q}) \times T_H(x_i, y_i, \tilde{Q}) \phi_I(y_i, Q)$

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- **Rigorous Factorization Formulae: Leading twist**
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling Insights for QCD from AdS/CFT Rome Colloquium 10-11-05 19

Test High Momentum Transfer Domain

- pQCD Factorization of hard, soft domains
- Constituent Counting Rules -- reflect conformal invariance of leading twist contributions to T_H
- Hadron helicity Conservation: F2/F1 higher twist
- Cannot postpone validity of leading twist domain: Higher twist effects controlled by nominal QCD scales
- Running coupling evaluated at small fraction of Q²

Frascati Nucleono5 10-14-05 New Perspectives on the Nucleon in QCD

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

Proton Form Factor

Timelike proton form factor in PQCD

Frascati Nucleono5 10-14-05

New Perspectives on the Nucleon in QCD

Asymptotic Behavior

The dashed line is a fit to the PQCD prediction

The expected Q² behaviour is reached quite early, however ...

... there is still a factor of 2 between timelike and spacelike.

Diego Bettoni

Timelike Proton Form Factor

Frascati Nucleono5 N 10-14-05

New Perspectives on the Nucleon in QCD

Test of PQCD Scaling

Constituent counting rules

Farrar, sjb; Muradyan, Matveev, Taveklidze

 $s^7 d\sigma/dt (\gamma p \rightarrow \pi^+ n) \sim const$ fixed θ_{CM} scaling

PQCD and AdS/CFT:

 $s^{n_{tot}-2}\frac{d\sigma}{dt}(A+B \rightarrow C+D) =$ $F_{A+B \rightarrow C+D}(\theta_{CM})$

 $s^{7} \frac{d\sigma}{dt} (\gamma p \rightarrow \pi^{+} n) = F(\theta_{CM})$ $n_{tot} = 1 + 3 + 2 + 3 = 9$

Conformal invariance at high momentum transfers!

• 15% Hidden Color in the Deuteron

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Test High Momentum Transfer Domain

- Constituent Counting Rules -- reflect conformal invariance of leading-twist contributions to T_H
- Hadron helicity conservation: F2/F1 higher-twist: PQCD analysis Belitsky, Tuan, Ji
- Cannot postpone validity of leading twist domain: Higher-twist effects controlled by nominal QCD scales Braun: LC sum Rules
- Normalization: Many issues: f_N Text, shape of distribution amplitude
- Running coupling evaluated at (1/20) Q² Ji, Robertson, Tang, sjb
- Define effective charge from pion form factor
- IR Fixed Point for QCD Coupling? Frascati Nucleon05 10-14-05 New Perspectives on the Nucleon in QCD 30

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

AdS5 Metric

Holographic Model

Mapping of Poincare' and Conformal SO(4,2) symmetries of 3+1 space to AdS5 space

J. Maldacena

Rome Colloquium 10-11-05

Strings, particles and extra dimensions. Strings moving in the fifth dimension are represented in the everyday world by their projection onto the four-dimensional boundary of the five-dimensional space-time. The same string located at different positions along the fifth dimension corresponds to particles of different sizes in four dimensions: the further away the string, the larger the particle. The projection of a string that is very close to the boundary of the four-dimensional world can appear to be a point-like particle.

Insights for QCD from AdS/CFT

deTeramond, sjb

AdS/CFT

- Use mapping of SO(4,2) to AdS5
- Scale Transformations represented by wavefunction $\Psi(r)$ in 5th dimension $x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \equiv r \rightarrow \frac{r}{\lambda} \equiv z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry at short distances $0 < z < z_0 = \frac{1}{\Lambda_{OCD}}, r > r_0 = \Lambda_{QCD}R^2$
- Match solutions at large r to conformal dimension of hadron wavefunction at short distances

 $\psi(r)
ightarrow r^{-\Delta}$ at large r, small z

• Truncated space simulates "bag" boundary conditions $\psi(z_0) = \psi(r_0) = 0$ $r = \frac{R^2}{z}$

Predictions of AdS/CFT

Only one parameter!

Entire light quark baryon spectrum

Phys.Rev.Lett.94: 201601,2005 hep-th/0501022

Fig: Predictions for the light baryon orbital spectrum for Λ_{QCD} = 0.22 GeV

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

: Light meson orbital spectrum: 4-dim states dual to vector fields in the bulk, $\Lambda_{QCD} = 0.26~{
m GeV}$ Guy de Teramond SJB

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Prediction of AdS/CFT Holographic Model

One parameter: $\Lambda_{QCD} = 0.15$ GeV.

The space-like current $J_{sl}(Q, z)$ is

$$J_{sl}(Q,z) = zQ \left[K_1(zQ) + \frac{K_0(Q/\Lambda_{\rm QCD})}{I_0(Q/\Lambda_{\rm QCD})} I_1(zQ) \right]$$

analytic continuation:

$$J_{tl}(Q,z) = -zQ \ \frac{\pi}{2} \left[Y_1(zQ) - \frac{Y_0(Q/\Lambda_{\rm QCD})}{J_0(Q/\Lambda_{\rm QCD})} J_1(zQ) \right]$$

Formalism: Polchinski and Strassler

New tool for QCD

Frascati Nucleono5 10-14-05

-20

-10

0

Space-like and time-like structure of the pro-

ton magnetic form factor in AdS/QCD for

 $\Lambda_{QCD} = 0.15$ GeV. The data are from the

compilation given by Baldini et al.

 $q^2(GeV^2)$

10

 $\log G_M(q^2)$

2

0

-2

-4

-6

-8

-30

New Perspectives on the Nucleon in QCD

Stan Brodsky, SLAC

38

Two-parton ground state LFWF in impact space $\psi(x, b)$ for a for $n = 2, \ell = 0, k = 1$.

Rome Colloquium 10-11-05 Insights for QCD from AdS/CFT

Figure 1: Two-parton bound state light-front wave function $\tilde{\psi}_L(x, \vec{b}_{\perp})$ as function of the constituents longitudinal momentum fraction x and 1 - x and the impact space relative coordinate \vec{b}_{\perp} in a holographic QCD model. The results for the ground state (L=0) are shown in (a). The predictions for first orbital exited states (L = 1 and L = 2) are shown in (b) and (c) respectively.

Rome Colloquium 10-11-05

Compare with Kroll et al., LGTH Insights for QCD Stan Brodsky, SLAC

from AdS/CFT