New Perspectives on the Structure and Interactions of the Nucleon in QCD

Workshop on Nucleon Form Factors

Frascati, 12-14 October, 2005
"Unique Form of Continuity in Space"
by Umberto Boccioni

Nucleon Form Factors

Nucleon current operator (Dirac \& Pauli)

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 M_{N}} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)
$$

Electric and Magnetic Form Factors

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned} \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E_{e}^{3} \sin ^{4} \frac{\theta}{2}}\left[G_{E}^{2}+\tau\left(1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1+\tau}
$$

$$
\stackrel{\text { Annihilation }}{\substack{e^{-o}}} \stackrel{d \sigma}{d \Omega}=\frac{\alpha^{2} \sqrt{1-1 / \tau}}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \quad \sqrt{0.5}
$$

Frascati Nucleono5 $10^{-1} 4^{-05}$

Fit of the phenomenological ansatz to the form factors and comparison to the standard dipole fit

form factors divided by standard dipole fit

form factors

Proton Form Factors: Central objects in hadron physics

- Dynamics and structure of proton at the amplitude level: multiquark and gluon system, meson cloud
- Fundamental test of QCD: quark and gluon structure of matter, confinement
- Underlies nuclear physics
- Critical to precision atomic physics: Lamb Shift, Hfs. (See J. Hiller talk). Input to g-2

Proton Form Factors: Central objects in hadron physics

- High momentum behavior: Fundamental tests of PQCD scaling, helicity structure, asymptotic freedom, conformal scaling, AdS/CFT
- Pauli form factor: requires nonzero orbital angular momentum
- Information on shape and normalization of proton distribution amplitude -- proton decay!
- Normalization of PQCD: QCD coupling at small scales, evidence for IR fixed point

How can we compute proton form factors from first principles?

- Lattice gauge theory
- Transverse lattice
- Discretized light-cone quantization: diagonalize LF Hamiltonian -- LFWFs, spectrum
- AdS/CFT

$$
\begin{gathered}
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle \\
H_{L C}^{Q C D}=P_{\mu} P^{\mu}=P^{-} P^{+}-\vec{P}_{\perp}^{2}
\end{gathered}
$$

Compute LFWFS from first principles

The hadron state $\left|\Psi_{h}\right\rangle$ is expanded in a Forkstate complete basis of non-interacting n particle states $|n\rangle$ with an infinite number of components

$$
\begin{gathered}
\left|\Psi_{h}\left(P^{+}, \vec{P}_{\perp}\right)\right\rangle= \\
\sum_{n, \lambda_{i}} \int\left[d x_{i} d^{2} \vec{k}_{\perp i}\right] \psi_{n / h}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
\times\left|n: x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i}, \lambda_{i}\right\rangle \\
\sum_{n} \int\left[d x_{i} d^{2} \vec{k}_{\perp i}\right]\left|\psi_{n / h}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right|^{2}=1
\end{gathered}
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right) \quad x_{x=\frac{k+}{\nu+}}
$$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Invariant under boosts. Independent of P^{μ}

A Unified Description of Hadron Structure

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Insights for QCD from AdS/CFT

Light-Cone Wavefunction Representations of Anomalous Magnetic Moment and Electric Dipole Moment

In the case of a spin- $\frac{1}{2}$ composite system, the Dirac and Pauli form factors $F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$, electric dipole moment form factor $F_{3}\left(q^{2}\right)$ are defined by

$$
\begin{equation*}
\left\langle P^{\prime}\right| J^{\mu}(0)|P\rangle=\bar{U}\left(P^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\mu}+F_{2}\left(q^{2}\right) \frac{i}{2 M} \sigma^{\mu \alpha} q_{\alpha}+F_{3}\left(q^{2}\right) \frac{-1}{2 M} \sigma^{\mu \alpha} \gamma_{5} q_{\alpha}\right] U(P) \tag{47}
\end{equation*}
$$

Dirac and Pauli form factors computed from matrix element of J^{+}

$$
\begin{gather*}
F_{1}\left(q^{2}\right)=\langle P+q, \uparrow| \frac{J^{+}(0)}{2 P^{+}}|P, \uparrow\rangle=\langle P+q, \downarrow| \frac{J^{+}(0)}{2 P^{+}}|P, \downarrow\rangle, \\
\frac{F_{2}\left(q^{2}\right)}{2 M}=\frac{1}{2}\left[+\frac{1}{-q^{1}+\mathrm{i} q^{2}}\langle P+q, \uparrow| \frac{J^{+}(0)}{2 P^{+}}|P, \downarrow\rangle+\frac{1}{q^{1}+\mathrm{i} q^{2}}\langle P+q, \downarrow| \frac{J^{+}(0)}{2 P^{+}}|P, \uparrow\rangle\right], \tag{49}\\
\frac{F_{3}\left(q^{2}\right)}{2 M}=\frac{i}{2}\left[+\frac{1}{-q^{1}+\mathrm{i} q^{2}}\langle P+q, \uparrow| \frac{J^{+}(0)}{2 P^{+}}|P, \downarrow\rangle-\frac{1}{q^{1}+\mathrm{i} q^{2}}\langle P+q, \downarrow| \frac{J^{+}(0)}{2 P^{+}}|P, \uparrow\rangle\right] . \tag{50}
\end{gather*}
$$

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Stan Brodsky, SLAC

Dirac and Pauli form factors exactly computed from convolutions of LFWFs (n ' $=n$)
 Drell Yan, West, Drell, SJB

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int \frac{\mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}} \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[+\frac{1}{-q^{1}+\mathrm{i} q^{2}} \psi_{a}^{\uparrow *}\left(x_{i}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{1}+\mathrm{i} q^{2}} \psi_{a}^{\downarrow *}\left(x_{i}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right]}
\end{aligned}
$$

$$
\frac{F_{3}\left(q^{2}\right)}{2 M}=\sum_{a} \int \frac{\mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}} \sum_{j} e_{j} \frac{i}{2} \times
$$

$$
\left[+\frac{1}{-q^{1}+\mathrm{i} q^{2}} \psi_{a}^{\uparrow *}\left(x_{i}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)-\frac{1}{q^{1}+\mathrm{i} q^{2}} \psi_{a}^{\downarrow *}\left(x_{i}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right]
$$

Pauli form factor requires nonzero L

$$
\vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\left(1-x_{i}\right) \vec{q}_{\perp} \quad \text { struck quark } \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp} \quad \text { spectator }
$$

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Insights for QCD from AdS/CFT

Stan Brodsky, SLAC

$$
F_{3}\left(q^{2}\right)=F_{2}\left(q^{2}\right) \times \tan \phi
$$

Fock state by Fock state

Gardner, Hwang, sjb,

Weak Exclusive Decay
$\langle D| J^{+}(0)|B\rangle$

Exact Formula
Annihilation amplitude needed for Lorentz Invariance

Frascati Nucleono5 $\mathrm{IO}^{-1} 4^{-05}$

New Perspectives on the Nucleon in QCD

$$
\left.\gamma^{*} P \rightarrow p^{\prime} \lambda^{\prime}\left|J^{\mu}(z) J^{\nu}(0)\right| p \lambda\right\rangle
$$

Given LFWFs, compute all GPDs!

ERBL Evolution

Deeply
Virtual
Compton Scattering

$$
\mathrm{n}=\mathrm{n}^{\prime}+2
$$

Required for Lorentz Invariance

Frascati Nucleono5 $\mathrm{IO}^{-1} 4^{-05}$

Light-cone wavefunction representation of deeply virtual Compton scattering **

Stanley J. Brodsky ${ }^{\text {a }}$, Markus Diehl ${ }^{\text {a, }}$, Dae Sung Hwang ${ }^{\text {b }}$

Angular Momentum on the Light-Front

$$
\begin{gathered}
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \text { Conserved } \\
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\bar{\partial}}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \quad \text { n-ı orbital angular momenta } \\
\text { Pauli form factor requires nonzero L } \mathrm{L}
\end{gathered}
$$

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O}_{5}$

Insights for QCD from AdS/CFT

Stan Brodsky, SLAC

Form Factors $\ell p \rightarrow \ell^{\prime} p^{\prime}\left\langle p^{\prime} \lambda^{\prime}\right| J^{+}(0)|p \lambda\rangle$

QCD Factorization

Lepage, SJB
Efremov, Radyuskin
Chernyak, Zhitnitsky

Scaling Laws from PQCD or AdS/CFT
Frascati Nucleono5
New Perspectives on the Nucleon in QCD

PQCD and Exclusive Processes

$$
M=\int \prod d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)
$$

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- Rigorous Factorization Formulae: Leading twist
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling

Test High Momentum Transfer Domain

- pQCD Factorization of hard, soft domains
- Constituent Counting Rules -- reflect conformal invariance of leading twist contributions to T_{H}
- Hadron helicity Conservation: F2/Fi higher twist
- Cannot postpone validity of leading twist domain: Higher twist effects controlled by nominal QCD scales
- Running coupling evaluated at small fraction of Q ${ }^{2}$
\bigcirc LCSR are fully consistent with PQCD:

V.Braun

Frascati Nucleono5 $10^{-}-14^{-05}$

New Perspectives on the Nucleon in QCD

Proton Form Factor

Primary Test of QCD Factorization, Scaling

Conformal Behavior : $t^{2} F_{1}(t)=$ const

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Insights for QCD from AdS/CFT

Timelike proton form factor in PQCD

Frascati Nucleono5 $\mathrm{IO}^{-} 14^{-05}$

Asymptotic Behavior

The dashed line is a fit to the PQCD prediction

$$
\frac{\left|G_{M}\right|}{\mu_{p}}=\frac{C}{s^{2} \ln ^{2}\left(\frac{s}{\Lambda^{2}}\right)}
$$

The expected Q^{2} behaviour is reached quite early, however .
... there is still a factor of 2 between timelike and spacelike.

Timelike Proton Form Factor

- Define "Effective" form factor by

$$
\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 m_{\bar{p} \bar{p}}{ }^{2}}|F|^{2},|F|=\sqrt{\left|G_{M}\right|^{2}+\frac{2 m_{p}^{2}}{m_{p \bar{p}}{ }^{2}}\left|G_{E}\right|^{2}}
$$

- Peak at threshold, sharp dips at 2.25 GeV , 3.0 GeV .
- Good fit to pQCD prediction for high m_{pp}.

Radiative return from BaBar

$$
F(s) \propto \frac{\log ^{-2} \frac{s}{\Lambda^{2}}}{s^{2}}
$$

Proton timelike form factor.

Kaon timelike form factor.

$$
\begin{aligned}
Q^{2}\left|F_{K}\left(13.48 \mathrm{GeV}^{2}\right)\right| & =0.85 \pm 0.05 \text { (stat) } \pm 0.02 \text { (syst) } \mathrm{GeV}^{2} \\
Q^{4}\left|G_{M}^{p}\left(13.48 \mathrm{GeV}^{2}\right)\right| / \mu_{p} & =0.91 \pm 0.13 \text { (stat) } \pm 0.06 \text { (syst) } \mathrm{GeV}^{4}
\end{aligned}
$$

The proton magnetic form factor result agrees with that measured in the reverse reaction $p \bar{p} \rightarrow e^{+} e^{-}$at Fermilab. The kaon form factor measurement is the first ever direct measurement at $\left|Q^{2}\right|>4 \mathrm{GeV}^{2}$.
The pion form factor is being measured.

Test of PQCD Scaling

Constituent counting rules

$\mathrm{s}^{\top} d \sigma / d t\left(\gamma p \rightarrow \pi^{+} n\right) \sim$ const fixed $\theta_{C M}$ scaling

PQCD and AdS/CFT:

$$
\begin{aligned}
& s_{\text {notot }-2 \frac{d \sigma}{d t}(A+B \rightarrow C+D)=}^{\mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)} \\
& s^{7} \frac{d \sigma}{d t}\left(\gamma p \rightarrow \pi^{+} n\right)=F\left(\theta_{C M}\right) \\
& n_{\text {tot }}=1+3+2+3=9
\end{aligned}
$$

Conformal invariance at high momentum transfers!

- 15% Hidden Color in the Deuteron

Test High Momentum Transfer Domain

- Constituent Counting Rules -- reflect conformal invariance of leading-twist contributions to T_{H}
- Hadron helicity conservation: F2/Fi higher-twist: PQCD analysis Belitsky, Tuan, Ji
- Cannot postpone validity of leading twist domain: Higher-twist effects controlled by nominal QCD scales
- Normalization: Many issues: f_{N} Text, shape of distribution amplitude
- Running coupling evaluated at ($\mathrm{I} / 20$) Q^{2} Ji, Robertson, Tang, sjb
- Define effective charge from pion form factor
- IR Fixed Point for QCD Coupling?

QCD Effective Coupling from

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Insights for QCD
from AdS/CFT

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

AdS5 Metric

Holographic Model

Mapping of Poincare' and Conformal $\mathrm{SO}(4,2)$ symmetries of $3+1$ space to AdS5 space

J. Maldacena

- Use mapping of $\mathrm{SO}(4,2)$ to AdS_{5}
- Scale Transformations represented by wavefunction $\Psi(\mathrm{r})$ in 5 th dimension

$$
x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \equiv r \rightarrow \frac{r}{\lambda} \equiv z \rightarrow \lambda z
$$

- Holographic model: Confinement at large distances and conformal symmetry at short distances

$$
0<z<z_{0}=\frac{1}{\Lambda_{Q C D}}, r>r_{0}=\wedge_{Q C D} R^{2}
$$

- Match solutions at large r to conformal dimension of hadron wavefunction at short distances

$$
\psi(r) \rightarrow r^{-\Delta} \text { at large } r, \text { small } z
$$

- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=\psi\left(r_{0}\right)=0
$$

$$
r=\frac{R^{2}}{z}
$$

Predictions of AdS/CFT

Only one

 parameter!Entire light quark baryon spectrum

Guy de Teramond SJB

Phys.Rev.Lett.94:
201601,2005
hep-th/0501022

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.22 \mathrm{GeV}$
$\underset{\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5}{\text { Rome Colloquium }}$

> Insights for QCD from AdS/CFT

Light meson orbital spectrum: 4-dim states dual to vector fields in the bulk, $\Lambda_{Q C D}=0.26 \mathrm{GeV}$
Guy de Teramond SJB

Rome Colloquium $\mathrm{IO}^{-} \mathrm{II}^{-} \mathrm{O} 5$

Prediction of AdS/CFT Holographic Model

 One parameter: $\wedge_{Q C D}=0.15 \mathrm{GeV}$.

Space-like and time-like structure of the proton magnetic form factor in AdS/QCD for $\Lambda_{Q C D}=0.15 \mathrm{GeV}$. The data are from the compilation given by Baldini et al.

Guy F. de Téramond and sjb in progress

The space-like current $J_{s l}(Q, z)$ is

$$
J_{s l}(Q, z)=z Q\left[K_{1}(z Q)+\frac{K_{0}\left(Q / \Lambda_{\mathrm{QCD}}\right)}{I_{0}\left(Q / \Lambda_{\mathrm{QCD}}\right)} I_{1}(z Q)\right.
$$

analytic continuation:

$$
J_{t l}(Q, z)=-z Q \frac{\pi}{2}\left[Y_{1}(z Q)-\frac{Y_{0}\left(Q / \Lambda_{\mathrm{QCD}}\right)}{J_{0}\left(Q / \Lambda_{\mathrm{QCD}}\right)} J_{1}(z Q)\right] .
$$

Formalism: Polchinski and Strassler

New tool for QCD

Holographic Model

Guy de Teramond SJB

Two-parton ground state LFWF in impact space $\psi(x, b)$ for a for $n=2, \ell=0, k=1$.

Holographic Model

> Guy de Teramond SJB

AdS/CFT

Figure 1: Two-parton bound state light-front wave function $\widetilde{\psi}_{L}\left(x, \vec{b}_{\perp}\right)$ as function of the constituents longitudinal momentum fraction x and $1-x$ and the impact space relative coordinate \vec{b}_{\perp} in a holographic QCD model. The results for the ground state $(L=0)$ are shown in (a). The predictions for first orbital exited states ($L=1$ and $L=2$) are shown in (b) and (c) respectively.

Rome Colloquium 10-II-O5

Compare with Kroll et al., LGTH
Insights for QCD from AdS/CFT

