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The aim of the workshop is to discuss recent and new data on the form
factors and their strangeness contribution as well as their theoretical
interpretation and connection to GPD's. A special attention is also
devoted to fostering current and future measurements, in particular to
the proposal to separate the time like GE and GM form factors by

measuring the center-of-mass angular distributions and polarization of

the proton in  reaction at the DAFNE storage ring upgraded in

energy, or in the annihilation on a transversely polarized
target, with the PAX experiment at the new GSI facility.

The form factors of the nucleon as measured in both the space-like and
time-like domains provide information on the structure and dynamics of
the nucleon. Both the analytical structure and phases of the form factors
in the time-like regime are connected by dispersion relations to the
space-like regime.

The recent experiments raised two serious issues: first the Fermilab

E835 mesurements of |GM(q2)| of the proton at q2=11.63 and 12.43

GeV2 have shown that |GM(q2)| in the time-like region is twice as large

as in the space-like region; second, the studies of the electron-to-proton
polarization transfer in electron proton scattering at Jlab show that the
ratio of the electric to magnetic form factor of the proton

|GE(q2)|/|GM(q2)| is monotonically decreasing with increasing Q2=-q2,

in strong contradiction with the ratio scaling derived in the traditional
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Dispersive description of the ratio GE /GM
The “inverse problem”

Two photon contribution to e+e− → pp

Introduction

Dispersive approach

Results and conclusions

Nucleon Form Factors

N

N

Γµ(q)

γ(q)
γµ

e−

e−
Nucleon current operator (Dirac & Pauli)

Γµ(q) = γµF1(q
2) +

i

2MN
σµνqνF2(q

2)

Electric and Magnetic Form Factors

GE (q2) = F1(q
2) + τF2(q

2)

GM(q2) = F1(q
2) + F2(q

2)
τ =

q2

4M2
N

θe− p
e
−

p

Elastic scattering

dσ

dΩ
=

α2E ′e cos2 θ
2

4E3
e sin

4 θ
2

[
G2

E + τ

(
1+ 2(1+ τ) tan2

θ

2

)
G2

M

]
1

1+ τ

θ

e− e+

p

p

Annihilation

dσ

dΩ
=

α2
√
1− 1/τ

4q2

[
(1+ cos2 θ)|GM |2 +

1

τ
sin2 θ|GE |2

]

Simone Pacetti Ratio |Gp
E (q2)/Gp

M (q2)| and dispersion relations
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Fit of the phenomenological ansatz to the form factors
and comparison to the standard dipole fit

form factors
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Proton Form Factors:
Central objects in hadron physics

• Dynamics and structure of proton at the 
amplitude level: multiquark and gluon system, 
meson cloud

• Fundamental test of QCD: quark and gluon 
structure of matter, confinement

• Underlies nuclear physics

• Critical to precision atomic physics: Lamb Shift, 
Hfs. (See J. Hiller talk).  Input to g-2

4
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Proton Form Factors:
Central objects in hadron physics

• High momentum behavior: Fundamental tests of 
PQCD scaling, helicity structure, asymptotic 
freedom, conformal scaling, AdS/CFT

• Pauli form factor: requires nonzero orbital 
angular momentum

• Information on shape and normalization of 
proton distribution amplitude -- proton decay!

• Normalization of PQCD: QCD coupling at small 
scales, evidence for IR fixed point

•
5
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How can we compute proton form factors from first principles?

• Lattice gauge theory

• Transverse lattice

• Discretized light-cone quantization: diagonalize 
LF Hamiltonian -- LFWFs, spectrum

• AdS/CFT 

6



 
 Stan Brodsky,  SLACRome Colloquium 10-11-05

Insights for QCD 
from AdS/CFT

7

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

measure of the phase space integration is
defined by

[dxi d2!k⊥i] = (16π3) δ

1−
n∑

j=1
xj

 δ(2)

 n∑
$=1

!k⊥$

 n∏
i=1

dxi

xi

d2!k⊥i

16π3 ,

(3)
and a normalized hadronic state 〈ψ|ψ〉 = 1,
can be expressed as a sum of overlap inte-
grals of light-front wavefunctions∑

n

∫
[dxi d2!k⊥i] |ψn/h(xi,!k⊥i, λi)|2 = 1. (4)

Compute 
LFWFS from 
first principles
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

8
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

Invariant under boosts.   Independent of Pµ

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1
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Light-Cone Wavefunction Representations of
Anomalous Magnetic Moment and Electric Dipole

Moment
August 28, 2005

1 Outline

• P, C, T on the LF

• LF representations of the electromagnetic form factors

• Relationship between F2 and F3

• Consequences for estimate of F3 and bounds on CP-violating parameters

1.1 Discrete Symmetry Transformations on the Light Front

We use the γ matrices in the Dirac representation:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (1)

where σi are Pauli matrices and σµν = i
2 [γ

µ, γν ]. The light-cone spinors are given by

uLC
↑ (p) =

1√
2p+


p+ + m

pR

p+ −m
pR

 , uLC
↓ (p) =

1√
2p+


−pL

p+ + m
pL

−p+ + m

 , (2)

where we use the notation pR = p1 + ip2, pL = p1 − ip2, p± = p0 ± p3. Moreover, we
employ the notation kµ = (k+, k−, kL, kR) throughout. Note that k ·x = (1/2)(k+x−+
k−x+ − kLxR − kRxL).

The development of the transformation properties of the various fermion bilinears
under C, P , and T in the light-front formalism parallels that of Peskin and Schroeder,
p. 64ff. One crucial difference, however, is that we will invoke the transformation
properties on the ⊥ components of xµ, kµ only, so that we can avoid the occurrence
of transformations such as k+ ↔ k−, or negative definite values of k+ or k−. In
specific, we will consider transformations on #k⊥ alone, so that |#k⊥|2, k−, and k+ all
remain unchanged. This means that our particles will remain on their energy shell
throughout, in analogy to the on-mass-shell condition in the equal-time formalism.

2 Light-Cone Wavefunction Representations

2.1 Electric Dipole Moment Form Factor

In the case of a spin-1
2 composite system, the Dirac and Pauli form factors F1(q2) and

F2(q2), electric dipole moment form factor F3(q2) are defined by

〈P ′|Jµ(0)|P 〉 = U(P ′)
[
F1(q

2)γµ+F2(q
2)

i

2M
σµαqα+F3(q

2)
−1

2M
σµαγ5qα

]
U(P ) , (47)

where qµ = (P ′ − P )µ and u(P ) is the bound state spinor. In the light-cone formal-
ism it is convenient to identify the Dirac and Pauli form factors from the helicity-
conserving and helicity-flip vector current matrix elements of the J+ current:

F1(q
2) =

〈
P + q, ↑

∣∣∣∣∣J+(0)

2P+

∣∣∣∣∣ P, ↑
〉

=

〈
P + q, ↓

∣∣∣∣∣J+(0)

2P+

∣∣∣∣∣ P, ↓
〉

, (48)

F2(q2)

2M
=

1

2

[
+

1

−q1 + iq2

〈
P + q, ↑

∣∣∣∣∣J+(0)

2P+

∣∣∣∣∣ P, ↓
〉

+
1

q1 + iq2

〈
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In getting (48), (49) and (50) from (47), we used (for P ′+ = P+)
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where e is the charge and M is the mass of the composite system. We use the standard
light-cone frame (q± = q0 ± q3):

q = (q+, q−, !q⊥) =

(
0,
−q2

P+
, !q⊥

)
,

P = (P+, P−, !P⊥) =

(
P+,

M2

P+
,!0⊥

)
, (55)

where q2 = −2P · q = −!q2
⊥ is 4-momentum square transferred by the photon.

The Pauli form factor and the anomalous magnetic moment κ = e
2M F2(0) and the

electric dipole moment d = e
2M F3(0) can then be calculated from the expressions

F2(q2)

2M
=

∑
a

∫ d2!k⊥dx

16π3

∑
j

ej
1

2
× (56)

[
+

1

−q1 + iq2
ψ↑∗

a (xi,!k
′
⊥i, λi) ψ↓

a(xi,!k⊥i, λi) +
1

q1 + iq2
ψ↓∗

a (xi,!k
′
⊥i, λi) ψ↑

a(xi,!k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫ d2!k⊥dx

16π3

∑
j

ej
i

2
× (57)

[
+

1

−q1 + iq2
ψ↑∗

a (xi,!k
′
⊥i, λi) ψ↓

a(xi,!k⊥i, λi)− 1

q1 + iq2
ψ↓∗

a (xi,!k
′
⊥i, λi) ψ↑

a(xi,!k⊥i, λi)
]

,

where the summation is over all contributing Fock states a and struck constituent
charges ej. The arguments of the final-state light-cone wavefunction are

!k′⊥i = !k⊥i + (1− xi)!q⊥ (58)

for the struck constituent and

!k′⊥i = !k⊥i − xi!q⊥ (59)

for each spectator.

3 Explicit Calculations in Example of Scalar Di-
quark Model

3.1 Sivers Function

In this section we calculate the Sivers function explicitly using the formula (??), which
expresses the Sivers function in terms of the light-cone wavefunctions, in the scalar

8
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Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2⊥. The four-momentum transfer
from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2⊥
1− ζ

. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:
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Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop. ! 2001 Elsevier Science B.V. All rights reserved.

PACS: 12.20.-m; 12.39.Ki; 13.40.Gp; 13.60.Fz

1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Pauli form factor requires nonzero L
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Scaling  Laws from PQCD or AdS/CFT

QCD  Factorization 
Lepage, SJB

Efremov, Radyuskin
Chernyak, Zhitnitsky
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PQCD and Exclusive Processes

• Iterate kernel of LFWFs when at high virtuality; distribution 
amplitude contains all physics below factorization scale

• Rigorous Factorization Formulae: Leading twist

• Underly Exclusive B-decay analyses

• Distribution amplitude: gauge invariant, OPE, evolution 
equations, conformal expansions

• BLM scale setting: sum nonconformal contributions in scale 
of running coupling

• Derive Dimensional Counting Rules/ Conformal Scaling

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Lepage, SJB
Efremov, Radyuskin

Chernyak, Zhitnitsky
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Test High Momentum Transfer Domain
• pQCD Factorization of hard, soft  domains

• Constituent Counting Rules -- reflect conformal 
invariance of leading twist contributions to TH

• Hadron helicity Conservation:  F2/F1 higher twist

• Cannot postpone validity of leading twist domain:  
Higher twist effects controlled by nominal QCD 
scales

• Running coupling evaluated at small fraction of 
Q2  
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Frascati, 12–14 May 2005 Nucleon05 - p. 7

Lessons to be learnt

♥ LCSR are fully consistent with pQCD:

NLO  pQCD

hep-ph/9907495

Soft + Hard Higher Twist

fit

asymp

CZ

• Observe a complicated interplay of soft and hard contributions;

perturbation theory might be rescued by the cancellation between

soft and hard higher-twist corrections

• Further theoretical progress possible

V.Braun
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Conformal Behavior : t2F1(t) = const

Non-perturbative model: 
Diehl, Kroll

Remarkable scaling 
behavior
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[33]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Primary Test of QCD Factorization, 
Scaling 

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Conformal Behavior : t2F1(t) = const

Running coupling 
evaluated at small scales

Resummation ?



 
 Stan Brodsky,  SLACFrascati Nucleon05 10-14-05 New Perspectives on the Nucleon in QCD 

24

u

P

P
– 

P
– 

u
– 

u
– 

u
– 

u
– 

u

d

d
– 

11-2003 

8680A8

e
+

e
– 

!*

u

K
– 0

s

d
– 

d
– 

"!

u
d

s
– 

de
+

e
– 

!*

Timelike proton form factor in PQCD 

0

1

2

3

4

5

-1 -0.5 0 0.5 1

1/Q fit

(log2 Q2) /Q2 fit

impr. (log2 Q2) /Q2 fit

IJL fit

!
!
""
#$
!
""
%
&
#'
''
(q

2
=

1
0

 G
e

V
2
)

cos(")

form factors at largeQ2, has the form [38, 86, 23]

GM (Q2) → α2
s(Q

2)

Q4

∑
n,m

bnm

(
log

Q2

Λ2

)γB
n +γB

n

×
[
1 + O

(
αs(Q

2),
m2

Q2

)]
. (13)

where the γB
n are computable anomalous dimensions [87]

of the baryon three-quark wave function at short distance,

and the bmn are determined from the value of the distribu-

tion amplitude φB(x, Q2
0) at a given point Q

2
0 and the nor-

malization of TH . Asymptotically, the dominant term has

the minimum anomalous dimension. The contribution from

the endpoint regions of integration, x ∼ 1 and y ∼ 1, at fi-
nite k⊥ is Sudakov suppressed [30, 86, 38]; however, the

endpoint region may play a significant role in phenomenol-

ogy.

The proton form factor appears to scale at Q2 >
5 GeV2 according to the PQCD predictions. Nucleon

form factors are approximately described phenomeno-

logically by the well-known dipole form GM (Q2) $
1/(1 + Q2/0.71 GeV2)2 which behaves asymptotically as
GM (Q2) $ (1/Q4)(1− 1.42 GeV2/Q2 + · · ·) . This sug-
gests that the corrections to leading twist in the proton form

factor and similar exclusive processes involving protons

become important in the rangeQ2 < 1.4 GeV2.

Measurements for the timelike proton form factor using

pp → e+e− annihilation are reported in Ref. [7]. The re-
sults are consistent with perturbative QCD scaling. The

ratio of the timelike to spacelike form factor depends in

detail on the analytic continuation of the QCD coupling,

anomalous dimensions [68].

The shape of the distribution amplitude controls the nor-

malization of the leading-twist prediction for the proton

form factor. If one assumes that the proton distribution am-

plitude has the asymptotic form: φN = Cx1x2x3, then the

convolution with the leading order form for TH gives zero!

If one takes a non-relativistic form peaked at xi = 1/3, the
sign is negative, requiring a crossing point zero in the form

factor at some finiteQ2. The broad asymmetric distribution

amplitudes advocated by Chernyak and Zhitnitsky [88, 89]

gives a more satisfactory result. If one assumes a constant

value of αs = 0.3, and fN = 5.3×10−3GeV2, the leading

order prediction is below the data by a factor of≈ 3. How-
ever, since the form factor is proportional to α2

sf
2
N , one

can obtain agreement with experiment by a simple renor-

malization of the parameters. For example, if one uses the

central value [90] fN = 8 × 10−3GeV2, then good agree-

ment is obtained [91]. The normalization of the proton’s

distribution amplitude is also important for determining the

proton’s lifetime [92, 93].

A useful technique for obtaining the solutions to the

baryon evolution equations is to construct completely an-

tisymmetric representations as a polynomial orthonormal

basis for the distribution amplitude of multi-quark bound

states. In this way one obtain a distinctive classification of

nucleon (N) and Delta (∆) wave functions and the cor-
responding Q2 dependence which discriminates N and ∆
form factors. More recently Braun and collaborators have

shown how one can use conformal symmetry to classify the

eigensolutions of the baryon distribution amplitude [46].

They identify a new ‘hidden’ quantum number which dis-

tinguishes components in the λ = 3/2 distribution ampli-
tudes with different scale dependence. They are able to find

analytic solution of the evolution equation for λ = 3/2 and
λ = 1/2 baryons where the two lowest anomalous dimen-
sions for the λ = 1/2 operators (one for each parity) are
separated from the rest of the spectrum by a finite ‘mass

gap’. These special states can be interpreted as baryons

with scalar diquarks. Their results may support Carlson’s

solution [94] to the puzzle that the proton to∆ form factor

falls faster [21] than other p → N∗ amplitudes if the ∆
distribution amplitude has a symmetric x1x2x3 form.

SINGLE-SPIN POLARIZATION EFFECTS

AND THE DETERMINATION OF

TIMELIKE PROTON FORM FACTORS

Although the spacelike form factors of a stable hadron

are real, the timelike form factors have a phase structure re-

flecting the final-state interactions of the outgoing hadrons.

In general, form factors are analytic functions Fi(q2) with
a discontinuity for timelike momentum above the physical

threshold q2 > 4M2. The analytic structure and phases of
the form factors in the timelike regime are thus connected

by dispersion relations to the spacelike regime [95, 96, 97].

The analytic form and phases of the timelike amplitudes

also reflects resonances in the unphysical region 0 < q2 <
4M2 below the physical threshold [95] in the JPC = 1−−

channel, including gluonium states and di-baryon struc-

tures.

Any model which fits the spacelike form factor data with

an analytic function can be continued to the timelike re-

gion. Spacelike form factors are usually written in terms

of Q2 = −q2. The correct relation for analytic con-

tinuation can be obtained by examining denominators in

loop calculations in perturbation theory. The connection is

Q2 → q2e−iπ, or

ln Q2 = ln(−q2) → ln q2 − iπ . (14)

If the spacelike F2/F1 is fit by a rational function of Q2,

then the form factors will be relatively real in the timelike

region also. However, one in general gets a complex result

from the continuation.

At very large center-of-mass energies, perturbative

QCD factorization predicts diminished final interactions in

e+e− → HH, since the hadrons are initially produced
with small color dipole moments. This principle of QCD

color transparency [98] is also an essential feature [99] of

hard exclusive B decays [100, 101], and it needs to be

tested experimentally.

There have been a number of explanations and theoreti-

cally motivated fits of the new Jefferson laboratory F2/F1
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Nicolas Berger 26

• Define “Effective” form factor by

• Peak at threshold, sharp dips at 2.25 GeV, 
3.0 GeV.

• Good fit to pQCD prediction for high mpp.

Timelike Proton Form Factor

N. Berger

Symmetrize

August 21, 2005

Φ(x, z = z0 = 1
ΛQCD

) = 0
In the large ! limit:
M2 = π2

4 !2Λ2
QCD

Conformal Symmetry – Property of classical renormalizable Lagrangian

Poincare transformations plus

dilatation : xµ → λxµ

plus

conformal transformations : inversion[xµ → −xµ

x2
] × translation × inversion

F (s) ∝ log−2 s
Λ2

s2

1

Radiative return from 
BaBar
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HADRON05 Aug. 22, 2005
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Proton timelike form factor. Kaon timelike form factor.

Q2|FK(13.48 GeV2)| = 0.85 ± 0.05(stat) ± 0.02(syst) GeV2

Q4|Gp
M(13.48 GeV2)|/µp = 0.91 ± 0.13(stat) ± 0.06(syst) GeV4

The proton magnetic form factor result agrees with that measured in the reverse
reaction pp̄ → e+e− at Fermilab. The kaon form factor measurement is the first

ever direct measurement at |Q2| > 4 GeV2.

The pion form factor is being measured.

Northwestern University 16 K. K. Seth

Seth
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfers!

Constituent counting rules Farrar, sjb; Muradyan, Matveev, Taveklidze
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Deuteron Reduced Form Factor
! Pion Form Factor×15%

• 15% Hidden Color in the Deuteron
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Test High Momentum Transfer Domain
• Constituent Counting Rules -- reflect conformal 

invariance of leading-twist contributions to TH

• Hadron helicity conservation:  F2/F1 higher-twist: 
PQCD analysis Belitsky, Tuan, Ji

• Cannot postpone validity of leading twist domain:  
Higher-twist effects controlled by nominal QCD scales

• Normalization: Many issues: fN Text, shape of 
distribution amplitude

• Running coupling evaluated at (1/20) Q2  

• Define effective charge from pion form factor

• IR Fixed Point for QCD Coupling?

•

Braun: LC sum Rules

Ji, Robertson,Tang, sjb
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!0.008 at s"m!
2 corresponds to a value of "MS(MZ

2)

"(0.117–0.122)!0.002, where the range corresponds to
three different perturbative methods used in analyzing the

data. This result is, at least for the fixed order and renorma-

lon resummation methods, in good agreement with the world

average "MS(MZ

2)"0.117!0.002 #46$. However, from the

figure we also see that the effective charge only reaches

"!(s)%0.9!0.1 at s"1 GeV2, and it even stays within the
same range down to s%0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson #47$
for the effective coupling "R(s)%0.85 for !s#0.3 GeV de-
termined from e

$
e

% annihilation, especially if one takes into

account the perturbative commensurate scale relation,

"!(m!!
2
)""R(s*) where, for "R"0.85, we have s*

!0.10 m!!
2
according to Eq. &7'. As we will show in more

detail in the next section, this behavior is not consistent with

the coupling having a Landau pole but rather shows that the

physical coupling is much more constant at low scales, sug-

gesting that physical QCD couplings are effectively constant

or ‘‘frozen’’ at low scales.

At the same time, it should be recognized that the behav-

ior of "!(s) in the region s#1 GeV2 is more and more
influenced by nonperturbative effects as the scale is lowered.

Even though the dominant nonperturbative effects cancel in

the sum of the vector and axial-vector contributions as can

be seen by looking at the corresponding effective charges

individually. Looking at "!
V(s), we see that it more or less

vanishes as the integration region moves to the left of the

two-pion peak in the hadronic spectrum. In the same way the

behavior of "!
A(s) at small scales is governed by the single

pion pole.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF !"„s…

In order to be able to analyze the infrared behavior of the

effective coupling "!(s) in more detail, we will compare

with &a' the fixed-order perturbative evolution of the "!(s)

coupling on the one hand, and &b' with the evolution of cou-
plings that have nonperturbative or all-order resummations

included in their definition. For the latter case, many differ-

ent schemes have been suggested, and we will concentrate on

two of them: the one-loop ‘‘timelike’’ effective coupling

"eff(s) #3–5$, and the modified "̃V coupling calculated from

the static quark potential using perturbative gluon condensate

dynamics #48$.
The perturbative couplings evolve according to the stan-

dard evolution equation

das&s '

d ln s
"%(0as

2&s '%(1as
3&s '%(2as

4&s '%(3as
5&s '% . . . ,

&8'

where as(s)""s(s)/(4)). The first two terms in the ( func-
tion, (0 and (1, are universal at leading twist whereas the
higher order terms are scheme dependent. Currently the (
function is known to four loops ((3) in the MS scheme and
to three loops ((2) in the "! scheme. In the latter case there

also exists an estimate of the four-loop term. For complete-

ness these terms are summarized in the Appendix.

Figure 3 shows a comparison of the experimentally deter-

mined effective charge "!(s) with solutions to the evolution

equation &8' for "! at two-, three-, and four-loop order nor-

malized at m! . It is clear from the figure that the data on

"!(s) does not have the same behavior as the solution of the

&universal' two-loop equation which is singular1 at the scale
s!1 GeV2. However, at three loops the behavior of the per-
turbative solution drastically changes, and instead of diverg-

ing, it freezes to a value "!!2 in the infrared. The reason for
this fundamental change is, of course, the negative sign of

(! ,2 . At the same time, it must be kept in mind that this

result is not perturbatively stable since the evolution of the

coupling is governed by the highest order term. This is illus-

trated by the widely different results obtained for three dif-

ferent values of the unknown four-loop term (! ,3 which are

also shown.2 Still, it may be more than a mere coincidence

that the three-loop solution freezes in the infrared. Recently

it has been argued that "R(s) freezes perturbatively to all

orders #49$. Given the commensurate scale relation &6' this
should also be true perturbatively for "!(s). It is also inter-

esting to note that the central four-loop solution is in good

agreement with the data all the way down to s!1 GeV2.
The one-loop ‘‘timelike’’ effective coupling #3–5$

1The same divergent behavior would also be seen at three-and

four-loop order in the MS scheme where both (2 and (3 are posi-
tive for n f"3.
2The values of (! ,3 used are obtained from the estimate of the four

loop term in the perturbative series of R! , K4
MS"25!50 #30$.

FIG. 3. &Color online' The effective charge "! for nonstrange

hadronic decays of a hypothetical ! lepton with m!!
2 "s compared

to solutions of the fixed order evolution equation &8' for "! at two-,

three-, and four-loop order. Error bands include statistical and sys-

tematic errors.

BRODSKY et al. PHYSICAL REVIEW D 67, 055008 &2003'

055008-4

QCD Effective Coupling from
hadronic τ decay

Menke,Merino,Rathsman,SJB
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT
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obtained by genetic analyses for the origin of
modern human variation1 only heightens
their importance. !
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I
n fundamental physics, our description of
nature involves four forces: gravitational,
electromagnetic, weak and strong. The

strong force is responsible for binding pro-
tons and neutrons inside the atomic nucleus.
Two different theoretical approaches have
been taken in describing the workings of the
strong force and the structure of particles
such as the proton and neutron. The theories
are seemingly at odds with each other, but
steps are gradually being taken to reconcile
the two. Writing in the Journal of High 

Energy Physics, Polchinski and Strassler1 now
dispel worries over an apparent contra-
diction between the theories, by showing
that it isn’t necessarily a contradiction at all.

In the 1960s, experiments on high-energy
collisions between protons revealed a
plethora of other short-lived, strongly inter-
acting particles. Shortly afterwards, a theory
emerged that proposed that all of these 
different particles were particular excitation
modes of a string: as a violin string can
vibrate with different frequencies, these
strings could oscillate in different ways, 
corresponding to the ‘zoo’ of particles that
was observed. This ‘string theory’ proved
useful in explaining some aspects of the
masses and spins of the particles.

But further experiments carried out
through the 1970s showed that protons are
not fundamental particles. In the same way
that, much earlier in the century, Rutherford
had shown that the atomic nucleus was
much smaller than an atom, experimenters
showed that protons, and neutrons, have
small point-like constituents. This didn’t fit
with the theory of protons as strings, which
are extended objects. In fact, these experi-
ments led to a new description of the strong
interaction in terms of point-like quarks and
gluons, through a theory called quantum
chromodynamics (QCD). 

As the electron carries an electric charge,

quarks and gluons carry a new type of
charge, called ‘colour’ (hence ‘chromo-
dynamics’). The gluons transmit the strong
force between quarks in much the same way
that the photon transmits the electro-
magnetic force between electrons and other
charged particles. To describe the strong
force we need three ‘colours’ — three differ-
ent types of charges, usually designated ‘red’,
‘green’ and ‘blue’. The validity of QCD has
been spectacularly confirmed by experi-
ments at high energies in particle colliders.
But, despite this success, it is still remarkably
hard to do theoretical calculations with QCD
at low energies. And that’s exactly where
things should get interesting: at low energies,
the colour flux lines form bundles of energy

that should behave like a string — a tantaliz-
ing connection from QCD to string theory.
These strings, made of gluons, bind the
quarks together. 

In fact, in the 1970s, Gerard ’t Hooft2

showed that QCD becomes a theory of free
(non-interacting) strings if the number of
colours is infinite. This simplifies the theory
considerably. Strings still exist in the three-
colour version of QCD, but in this case the
strings are interacting. No way has yet been
found to simplify QCD into a free-string 
theory, but it could be the key to understand-
ing many low-energy properties of particles
that interact through the strong force, and in
particular for deriving a curious property of
QCD, called confinement. No one has ever
observed a free quark, because colour-
charge-bearing objects such as quarks and
gluons are subject to confinement: in other
words, as two quarks are gradually separated
the attractive force between them due to
their colour charges remains constant; this
contrasts with the more familiar forces in
electromagnetism and gravity that fall off
with the square of increasing distance.

The way forward has been signalled by
work on strings in ‘QCD-like’ theories3–5. A
surprising and counterintuitive feature of
these strings is that they move in more than
the familiar four dimensions of everyday life
— three spatial dimensions and one of time.
Even though the gluons that make up the
strings move in four dimensions, the string
itself moves in five dimensions. Polchinski
and Strassler1 now show that this fact is a 
crucial element in reconciling the string 
picture and the point-like behaviour seen in
high-energy collisions.  

The strings move in a five-dimensional
curved space-time with a boundary. The
boundary corresponds to the usual four
dimensions, and the fifth dimension
describes the motion away from this bound-
ary into the interior of the curved space-
time. In this five-dimensional space-time,
there is a strong gravitational field pulling
objects away from the boundary, and as a
result time flows more slowly far away from
the boundary than close to it. This also
implies that an object that has a fixed proper
size in the interior can appear to have a differ-
ent size when viewed from the boundary
(Fig. 1). Strings existing in the five-dimen-
sional space-time can even look point-like
when they are close to the boundary.
Polchinski and Strassler1 show that when an
energetic four-dimensional particle (such as
an electron) is scattered from these strings
(describing protons), the main contribution
comes from a string that is close to the
boundary and it is therefore seen as a point-
like object. So a string-like interpretation of a
proton is not at odds with the observation
that there are point-like objects inside it. 

Because the theory that describes the
interior of the five-dimensional space-time

NATURE | VOL 423 | 12 JUNE 2003 | www.nature.com/nature 695

High-energy physics

Into the fifth dimension
Juan Maldacena

Particles such as the proton can be imagined as vibrating strings. We also
know that protons contain smaller, point-like particles, going against the
string theory. But in five dimensions, the contradiction disappears.

news and views

Particle in four dimensions

Four-dimensional

space-time

Fifth dimension

String

Figure 1 Strings, particles and extra dimensions.

Strings moving in the fifth dimension are

represented in the everyday world by their

projection onto the four-dimensional boundary

of the five-dimensional space-time. The same

string located at different positions along the

fifth dimension corresponds to particles of

different sizes in four dimensions: the further

away the string, the larger the particle. The

projection of a string that is very close to the

boundary of the four-dimensional world can

appear to be a point-like particle. 
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AdS5 Metric

Holographic 
Model

Mapping of  Poincare’ and Conformal 
SO(4,2) symmetries of 3+1 space to  

AdS5 space

z



AdS/CFT
• Use mapping of SO(4,2) to AdS5

• Scale Transformations represented by 
wavefunction Ψ(r) in 5th dimension

• Holographic model: Confinement at large 
distances and conformal symmetry at short 
distances

• Match solutions at large r to conformal 
dimension of hadron wavefunction at short 
distances

• Truncated space simulates “bag” boundary 
conditions

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r =
Λ2

QCD
z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCD

ψ(z0) = ψ(r0) = 0

r = R2

z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCDR2

ψ(z0) = ψ(r0) = 0

r = R2

z

x2
µ → λ2x2

µ ≡ r → r
λ ≡ z → λz

Confinement:

ψ(r)→ r−∆ at large r, small z

0 < z < z0 = 1
ΛQCD

, r > r0 = ΛQCDR2

ψ(z0) = ψ(r0) = 0

z= R2/rdeTeramond, sjb
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.22 GeV

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 20

Guy de Teramond
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Only one 
parameter! 

Phys.Rev.Lett.94:
201601,2005

hep-th/0501022

Entire light 
quark 

baryon 
spectrum

Predictions 
of  AdS/CFT
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR
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Fig: Light meson orbital spectrum: 4-dim states dual to vector fields in the bulk, ΛQCD = 0.26 GeV
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Prediction of AdS/CFT Holographic Model

One parameter: ΛQCD = 0.15 GeV.

G. DeTeramond and SJB

Space-like and time-like structure of the pro-
ton magnetic form factor in AdS/QCD for
ΛQCD = 0.15 GeV. The data are from the
compilation given by Baldini et al.

J(Q, z) = zQK1(zQ)

Prediction of AdS/CFT Holographic Model

One parameter: ΛQCD = 0.15 GeV.

G. DeTeramond and SJB

Space-like and time-like structure of the pro-
ton magnetic form factor in AdS/QCD for
ΛQCD = 0.15 GeV. The data are from the
compilation given by Baldini et al.

J(Q, z) = zQK1(zQ)

logGM(q2)

Space-like and time-like structure of the pro-
ton magnetic form factor in AdS/QCD for
ΛQCD = 0.15 GeV. The data are from the
compilation given by Baldini et al.

J(Q, z) = zQK1(zQ)

The prediction in the domain 0 < Q2 < 4M2
p

represents an analytic continuation into the

Prediction of AdS/CFT Holographic Model

One parameter: ΛQCD = 0.15 GeV.

Guy F. de Téramond and sjb
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One parameter: ΛQCD = 0.15 GeV.
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Prediction of AdS/CFT Holographic Model
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Figure 3: Space-like and time-like structure of the proton magnetic form factor in

AdS/QCD for ΛQCD = 0.155 GeV.

The resonant structure of the poles is not damped by the effect of mass widths

(which is not included in the present model). The phase changes abruptly by 1800

when crossing each pole. The computation shows an structure of alternating bands

with characteristically lower values. This effect could be an artifact of the model and

the spurious results may be less important in a more detailed model? One should

not rule out a priori, however, an structure with dips, although the data near Q = 13

GeV/c rules out the second dip.

3

S-L and T-L Proton Form Factor Behavior
10/13/2005

The external current

Aµ(x, z) = εµeiQ·xJ(Q, z), (1)

satisfy the wave equation in AdS space. The boundary conditions on the field strength

Fm
! = ∂!A

m − ∂mA!, (2)

are determined by the condition that F vanishes in the infrared brane located at

z0 = 1/ΛQCD: F (z0) = 0. Thus

∂zA
µ(x, z)|z=z0 = 0, (3)

in the gauge where Az(x, z) = 0.

The above condition together with the conditions

J(Q, 0) = J(0, z) = 0 (4)

determine the current J(Q, z) inside the cavity.

Space-Like Current
The space-like current Jsl(Q, z) is

Jsl(Q, z) = zQ

[
K1(zQ) +

K0(Q/ΛQCD)

I0(Q/ΛQCD)
I1(zQ)

]
. (5)

The space-like electromagnetic current is damped inside the cavity as shown in

Fig. 1

Time-Like Current

The time like current Jtl(Q, z) is obtained by analytic continuation from the space-

like current Jsl(Q, z) using the transformation Q→ −iQ

Jtl(Q, z) = Jsl(−iQ, z) (6)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

Figure 1: The space-like current J(Q, z) is damped inside the cavity. Black curve:

Q = 0.4 GeV/C, red curve: Q = 4 GeV/c.

Using the relations

In(−ix) = i−nJn(x), (7)

Kn(−ix) =
π

2
in+1H(1)

n (x), (8)

together with the definition of the Hankel function

H(1)
n (x) = Jn(x) + iYn(x), (9)

we obtain the expression for the time-like electromagnetic current Jtl(Q, z) in AdS

space:

Jtl(Q, z) = −zQ
π

2

[
Y1(zQ)− Y0(Q/ΛQCD)

J0(Q/ΛQCD)
J1(zQ)

]
. (10)

The current Jtl(Q, z) satisfies the boundary conditions (3) and (4). The time-like

current is amplified in the cavity as shown in Fig. 2.
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-4

-2

0
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Figure 2: The time-like current J(Q, z) is amplified and oscillates inside the cavity.

Black curve: Q = 0.4 GeV/C, red curve: Q = 4 GeV/c.

The numerical computation for the proton magnetic form factor in the space and

time-like regions gives the results shown in Fig. 3.

2

analytic continuation:

Formalism: Polchinski and Strassler

New tool for QCD

in progress
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR
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Two-parton ground state LFWF in impact space ψ(x, b) for a for n = 2, " = 0, k = 1.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 26

AdS/CFT 
prediction for 
meson LFWF

Guy de Teramond
SJB 

ζ = b
√

x(1− x)

z → ζ

ζ = b
√

x(1− x)

Holographic Model
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Holographic Modelwhere C = B1/2. In Fig. 1 we show the model results for the light-front wave function
of a two-parton bound state ψ̃L(x, ζ) as a function of the constituent’s longitudinal
momentum fraction x and 1− x, and the impact space variable #b⊥. The predictions
correspond to the ground state, L = 0, and the first orbital exited states L = 1 and
L = 2. The normalization in the figures is arbitrary.
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Figure 1: Two-parton bound state light-front wave function ψ̃L(x,"b⊥) as function of the
constituents longitudinal momentum fraction x and 1 − x and the impact space relative
coordinate "b⊥ in a holographic QCD model. The results for the ground state (L = 0) are
shown in (a). The predictions for first orbital exited states (L = 1 and L = 2) are shown in
(b) and (c) respectively.

The representation of the light-front wave function in terms of x and #k⊥, ψL(x,#k⊥),
has the invariant form

ψL(x,#k⊥) =
C

4π

∫ Λ−1
QCD

0

dζJ0

(
ζ|#k⊥|√
x(1− x)

)
J1+L (ζM) . (30)

In the |#k⊥|→∞ limit the important contribution to (30) is from the region near
ζ ∼√

x(1− x)/|#k⊥|. At large k⊥ the LFWF has the scaling behavior

ψ(x,#k⊥)→
[

|#k⊥|√
x(1− x)

]L [
x(1− x)

#k2
⊥

]1+L

, (31)

which reproduces the #k⊥ dependence of the results found in [7]. The results presented
here also include the scaling behavior in the x variable.

6 Concluding Remarks

An all-orders derivation of light-front wave functions including orbital angular mo-
mentum exited states was carried out from the gauge/string duality. Exact analytical
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where C = B1/2. In Fig. 1 we show the model results for the light-front wave function
of a two-parton bound state ψ̃L(x, ζ) as a function of the constituent’s longitudinal
momentum fraction x and 1− x, and the impact space variable #b⊥. The predictions
correspond to the ground state, L = 0, and the first orbital exited states L = 1 and
L = 2. The normalization in the figures is arbitrary.
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Figure 1: Two-parton bound state light-front wave function ψ̃L(x,"b⊥) as function of the
constituents longitudinal momentum fraction x and 1 − x and the impact space relative
coordinate "b⊥ in a holographic QCD model. The results for the ground state (L = 0) are
shown in (a). The predictions for first orbital exited states (L = 1 and L = 2) are shown in
(b) and (c) respectively.

The representation of the light-front wave function in terms of x and #k⊥, ψL(x,#k⊥),
has the invariant form

ψL(x,#k⊥) =
C

4π

∫ Λ−1
QCD

0

dζJ0

(
ζ|#k⊥|√
x(1− x)

)
J1+L (ζM) . (30)

In the |#k⊥|→∞ limit the important contribution to (30) is from the region near
ζ ∼√

x(1− x)/|#k⊥|. At large k⊥ the LFWF has the scaling behavior

ψ(x,#k⊥)→
[

|#k⊥|√
x(1− x)

]L [
x(1− x)

#k2
⊥

]1+L

, (31)

which reproduces the #k⊥ dependence of the results found in [7]. The results presented
here also include the scaling behavior in the x variable.

6 Concluding Remarks

An all-orders derivation of light-front wave functions including orbital angular mo-
mentum exited states was carried out from the gauge/string duality. Exact analytical
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