Polarization transfer in $^4\text{He}(e^-, e^{'p^-})^3\text{H}$

Is the ratio G_{Ep}/G_{Mp} modified in medium?

Omar Benhar

INFN and Dept. of Physics, Universit`a “La Sapienza”, Roma

work done in collaboration with

R.Schiavilla, A. Kievsky, L.E. Marcucci & M. Viviani

PRL 94 (2005) 072303
Polarization transfer & nucleon form factors

- in $\vec{e} + p \rightarrow e + \vec{p}$

\[
\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \frac{E_e + E_{e'}}{2M} \tan \frac{\theta}{2}
\]

P'_x and P'_z transferred polarizations, transverse and longitudinal to the proton momentum, respectively
Polarization transfer & nucleon form factors

- in $\vec{e} + p \rightarrow e + \vec{p}$

$$\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \frac{E_e + E_{e'}}{2M} \tan \frac{\theta}{2}$$

P'_x and P'_z transferred polarizations, transverse and longitudinal to the proton momentum, respectively

- quasielastic proton knock out $\vec{e} + A \rightarrow e + \vec{p} + (A - 1)^*$ also sensitive to the ratio G_E/G_M.

Polarization transfer & nucleon form factors

- in $\vec{e} + p \rightarrow e + \vec{p}$

$$\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \frac{E_e + E_{e'}}{2M} \tan \frac{\theta}{2}$$

P'_x and P'_z transferred polarizations, transverse and longitudinal to the proton momentum, respectively.

- quasielastic proton knock out $\vec{e} + A \rightarrow e + \vec{p} + (A - 1)^*$ also sensitive to the ratio G_E/G_M.

- $A(\vec{e}, e'\vec{p})$ measurements may provide information on possible medium modifications of the proton form factors
Medium modifications of the nucleon

- A long-standing and controversial issue. Increase of nucleon size advocated to explain:
 - depletion of the nucleon structure functions measured in deep inelastic scattering (EMC effect)
 - quenching of the quasielastic longitudinal response (violation of the Coulomb sum rule)
- No compelling evidence of medium modifications
- Modifications strongly constrained by y-scaling analysis of inclusive data
Medium modifications of the nucleon

A long-standing and controversial issue. Increase of nucleon size advocated to explain:

- depletion of the nucleon structure functions measured in deep inelastic scattering (EMC effect)
Medium modifications of the nucleon

- A long-standing and controversial issue. Increase of nucleon size advocated to explain:
 - depletion of the nucleon structure functions measured in deep inelastic scattering (EMC effect)
 - quenching of the quasielastic longitudinal response (violation of the Coulomb sum rule)
Medium modifications of the nucleon

- A long-standing and controversial issue. Increase of nucleon size advocated to explain:
 - depletion of the nucleon structure functions measured in deep inelastic scattering (EMC effect)
 - quenching of the quasielastic longitudinal response (violation of the Coulomb sum rule)
- No compelling evidence of medium modifications
Medium modifications of the nucleon

- A long-standing and controversial issue. Increase of nucleon size advocated to explain:
 - depletion of the nucleon structure functions measured in deep inelastic scattering (EMC effect)
 - quenching of the quasielastic longitudinal response (violation of the Coulomb sum rule)

- No compelling evidence of medium modifications

- Modifications strongly constrained by y-scaling analysis of inclusive data
Experiments at Mainz and JLab have measured

\[R = \frac{(P'_x/P'_z)^{^4\text{He}}}{(P'_x/P'_z)^{^1\text{H}}} \]

in the range \(0.4 \leq Q^2 \leq 2.6\) GeV²
Experiments at Mainz and JLab have measured

\[R = \frac{(P'_x/P'_z)^{4\text{He}}}{(P'_x/P'_z)^{1\text{H}}} \]

in the range \(0.4 \leq Q^2 \leq 2.6 \text{ GeV}^2 \)

Theoretical calculations carried out by Udias et al suggest that inclusion of the medium modifications predicted by the Quark-Meson Coupling model is needed to explain the data.
Experiments at Mainz and JLab have measured

\[R = \frac{(P'_x/P'_z)^{4\text{He}}}{(P'_x/P'_z)^{\text{1H}}} \]

in the range \(0.4 \leq Q^2 \leq 2.6 \text{ GeV}^2\)

- Theoretical calculations carried out by Udias et al suggest that inclusion of the medium modifications predicted by the Quark-Meson Coupling model is needed to explain the data.

- Analysis inherently model dependent. Calculations carried out within different approaches, including correlations, two-body currents and full final state interactions (FSI), needed.
Summary of our theoretical approach

- realistic variational bound state wf’s (A18 + UIX Hamiltonian)

- final state written in the form

\[
\psi_{k\sigma;\sigma_3}^{(-)} = \frac{1}{\sqrt{4}} \sum_{\mathbf{P}} (-)^{\mathbf{P}} \left[\eta_{k\sigma}^{(-)}(i; p)\phi_{\sigma_3}(jkl;^3\text{H}) + \eta_{k\sigma}^{(-)}(i; n)\phi_{\sigma_3}(jkl;^3\text{He}) \right]
\]

- \(\eta_{k\sigma}^{(-)}(i; \text{p/n})\) obtained from the optical potential

\[
v_{T}^{\text{opt}} = [v^c(r; E) + (4T-3)v^{c\tau}(r; E)] + [v^b(r; E) + (4T-3)v^{b\tau}(r; E)] \cdot \mathbf{s}
\]

determined by \(p + ^3\text{He} \to p + ^3\text{He}\) and \(p + ^3\text{H} \to n + ^3\text{He}\) data

- one- and two-body terms included in the em current operator

- matrix elements \(\langle \psi_{k\sigma;\sigma_3}^{(-)} | j^{\mu} | ^4\text{He} \rangle\) computed using Monte Carlo
Results

- Q^2-dependence of the super-ratio R/R_{PWIA}
Results

- Q^2-dependence of the induced polarization P_y
Summary

- The observed suppression of the super-ratio in 4He can be explained by FSI effects and two-body current contributions.
Summary

- The observed suppression of the super-ratio in 4He can be explained by FSI effects and two-body current contributions.
- Within our model no in-medium modification of the proton electromagnetic form factors is needed to reproduce the experimental data.
Summary

- The observed suppression of the super-ratio in 4He can be explained by FSI effects and two-body current contributions.
- Within our model no in-medium modification of the proton electromagnetic form factors is needed to reproduce the experimental data.
- Our results support the conclusions of the analyses of the Coulomb sum rule in few-nucleon systems, showing that there is no missing longitudinal strength when the free-space proton form factor is used.