Nanotubes & Nanostructures 2001 Laboratori Nazionali di Frascati - Frascati - Italy October 17 - 27, 2001

Ugo Valbusa (Dip.Fisica, Univ. Ge) Valbusa@fisica.unige.it

Nanotribology of carbon based films

OUTLINE

Introduction
Nanostructured carbon films
NCF friction and adhesion
NCF mechanical properties
Conclusions

Introduction

Macrotribology

Large mass (Gg, Mg)
Heavy load (GN, MN)
Wear
Bulk

Micro/Nanotribology

Small mass (µg,ng)
Ligth load (µN,nN)
No wear
Surface

Supercomputers for

New techniques to measure:

 Surface topography
 Adnesion piezoresistive •Friction

Wear
Lubricant film thickness
Mechanical properties
Lubricant molecules

integrated resistive heater

Tribology needs for future space and aeronautical systems

Fig. 5 Growth of tribology requirements with advances in space (Ref. 62).

R.Fusaro 1991NASA Technical Memorandum 104525

Problems & scientific challenges

- high temperatures
- low temperatures (-40°C aircraft flying at high altitude) (-170°C Mars, Moon)
- length of operation (up to 30 years)
- Iubrication of vehicles and equipment's on Moon and Mars
- contamination or abrasion by dust
- ability to supply lubricant to the contact areas
- degradation due to atomic oxygen and radiation
- lack of oxygen in space

0.0 ps

MEMS

NEMS

10.0 ps

New materials

New methods for measuring friction at nanometer scale

New methods for measuring mechanical properties at nanometer scale

ns-C Preparation

ns-C are formed *via* <u>cluster deposition</u>, not *via* atom-by-atom deposition.

Adhesion/friction Macroscopic scale

Slope µ Friction coefficient

Friction measurements at the nanometer scale

Friction Force Microscope is an ideal instrument to study tribological properties at nanometric scale

G. Mayer, N. M. Amer Appl. Phys. Lett. 53, 1045 (1988)

Friction/adhesion Nanoscale

Quantities measured in FFM experiments

 $c_n = \frac{E}{4} \frac{wt^3}{I^3}$

 $c_{tor} = \frac{G}{3} \frac{wt^3}{Lh^2}$

 $F_n = 0$

 $F_{lat} = \frac{3}{2}c_{tor}\frac{h}{L}\delta_t$

Macro vs Nano friction

Multi-asperity contacts: macro-world...the number of junctions increases on increasing load

Single-asperity contact: nano-world the area of the single contact increases on increasing load.

ung Distance

Topographical effects on FFM measurements

Friction maps...FFM lateral resolution

Silicon oxides....Scandella et al. JVST B 14, 1255 (1989)

- Patterns di 150nm creati per fotolitografia su Si(110) ossidato SiO₂ chiaro, Si passivato ,scuro
- I mmagine in lateral force, l' attrito è piu' alto nelle zone passivate

Langmuir-Blodgett films....Meyer et al. Thin Solid Films 220, 132 (1992)

- a) Immagine topografica che mostra come i domini degli idrocarburi (chiari) siano piu' alti del 'mare' di fluorocarburi.
- b) Lateral force mostra che gli idrocarburi hanno un attrito inferiore rispetto ai fluorocarburi.

Indentation curves

Indentation curves

Deformed surface after tip removal

Indentation impressions

Nano-structured Carbon Films

ns-C Preparation

ns-C are formed *via* <u>cluster</u> <u>deposition</u>, not *via* atom-by-atom deposition.

Surface morphology and mechanical properties depend on the nature of primeval clusters

NSCF have been produced by a micro-pulsed cluster beam source (P.Milani et al. Surface Sci.1998)

Samples having a gradient in the cluster size (dynamical focussing effect)

Large clusters

Small clusters

Samples with different thickness -> for a constant flux, different deposition times

$15 \ x \ 15 \ \mu m^2$

 $2.5 \ x \ 2.5 \ \mu m^2$

Small clusters

$15 \; x \; 15 \; \mu m^2$

 $2.5 \ x \ 2.5 \ \mu m^2$

Medium clusters

Morphological quantities

Height of the interface $z(\mathbf{r},t)$

Mean height
$$\langle z(t,L) \rangle = \frac{1}{L^2} \int d\mathbf{r} \, z(\mathbf{r},t)$$

Roughness

$$w(t, L) = \left\{ \frac{1}{L^2} \int d\mathbf{r} \left[z(\mathbf{r}, t) - \langle z(t, L) \rangle \right]^2 \right\}^{\frac{1}{2}}$$

1 /

Height – Height Corr.
$$G(\mathbf{r},t) = \langle (z(\mathbf{r},t) - z(0,t))^2 \rangle$$

Lateral Correlatio n Lenght ξ

A self-similar interface is statistically invariant for isotropic scale transformations:

If
$$\mathbf{r}' = b \mathbf{r}$$

then $z' = b z$

A self-affine interface is statistically invariant for anisotropic scale transformations:

If
$$\mathbf{r}' = b \mathbf{r}$$

then $z' = b^{\alpha} z$

Self-affine interface and scaling laws

 α is the roughness exponent ξ is the lateral correlation length

 β is the growth exponent

$$G(\mathbf{r}) \propto r^{2\alpha} \quad if \ r \ll \xi \ll L$$

$$G(\mathbf{r}) \propto G_{sat} \quad if \ r \gg \xi$$

$$w(t,L) \propto t^{\beta} \quad if \ t \ll t_{x}$$
$$w(t,L) \propto w_{sat} \quad if \ t \gg t_{x}$$

The $\boldsymbol{\beta}$ coefficient does not change with the primeval cluster size

Scaling laws

The α coefficient does not change with the primeval cluster size

Fractal dimension of NSCF

An alternative method to calculate the α parameter is *via* the fractal dimension, following the algorithm of Dubuc et al. (1989)

If D is the fractal dimension of a 2-dimensional structure ->

$$D = 3 - \alpha$$

An independent way to calculate $\boldsymbol{\alpha}$

ns-C Morphology

R.Buzio et al. Surf.Sci. 444, L1 (2000)

Surface morphology has been characterised by AFM measurements operated in IC-AFM in air; <u>ns-C films are</u> <u>self-affine</u> from nanometric to micrometric scale.

Comparison with other C films

Topography, 0604G001.HDF

roughness is very low (≈ 5 A) and there is not evidence of nano-structures Morphology of Carbon films grown by Laser Ablation (E.Riedo -ESRF)

Balistic deposition -> coral reef

Random deposition

 $\alpha \sim 0.33 \div 0.35$

β~0.21÷0.24

 $\alpha \rightarrow \infty$

 $\beta = 0.5$

Random deposition with relaxation

 $\alpha = 0$

 $\beta = 0$

Quenched noise

liquid fronts advancing inside porous media

propagation of burning fronts

widespread impurities of the medium *locally* pin the interface of the fluid *(quenched noise)* and force As a consequence, the propagation of the interface is slowed or even stopped.

R.Buzio et al. Surface Science 444 (2000) L1-L6

NSCF are self-affine

•The $\alpha \approx 0.7$ a $\beta \approx 0.4$ parameters do not depend on cluster size

NSCF grow via a quenched-noise

mechanism

Outline

- <u>Nanostructured</u> carbon-based films (ns-C).
- Friction Force Microscopy for tribological investigations: <u>single asperity friction</u> in wear-less regime.
- FFM measurements on ns-C films : influence of <u>morphology</u> and <u>cluster size</u> on the frictional response.
- <u>Comparison</u> of ns-C, a-C and HOPG frictional performance.

Lateral Force Maps

 $2 \times 2 \mu m^2$

Friction-loop amplitude depends on surface location

mean friction-loop amplitude vs the normal load and ns-C composition. scan-area

- a) There is a <u>non-linear dependence</u> of lateral force from the normal load as expected in the <u>single-asperity regime</u>
- b) The scattering of experimental curves reflects that <u>adhesion</u> <u>varies</u> on changing the specific location were frictional properties are tested (the <u>particular grain</u> on which the tip is located).

Experimental results on ns-C films

a) The <u>non-linear dependence</u> of lateral force from the normal load is fitted by the <u>Hertzian-plus-offset model</u> (DMT theory)...

$$F_{//} = \pi \tau \left(\frac{R}{K}\right)^{2/3} \left(F_{\perp} - F_{off}\right)^{2/3} = C \left(F_{\perp} - F_{off}\right)^{2/3}$$

α C films*	0.45
HOPG*	0.0012
Diamond*	0.26
ns-C films RegionI	0.10
ns-C films RegionI I	0.14

R.Buzio et al. Carbon 2001

Friction on ns-C films at the nanometric scale <u>is influenced</u> by the local cluster size, morphology and hydrofilicity, *i.e. it is a size-dependent property of these materials.*

The value of the coefficient of friction shows that ns-C <u>are</u> <u>not self-lubricant as HOPG</u> even if their composition is similar: however ns-C frictional performance is better than that of a-C films.

Indentation Curves

F=H x A

$D_{f} = 2.30$; $\sigma = 120$ nm $D_{f} = 2.30$; $\sigma = 80$ nm

 $D_{f} = 2.20$; $\sigma = 40$ nm $D_{f} = 2.10$; $\sigma = 20$ nm

Equivalent Cantor set surface

 $D_F = 2.30 \pm 0.01$.

 $\sigma_{sat} \approx 80$ nm.

 $\xi \approx 800$ nm.

Stiffness

S=H x dA/dz

Fractal nature of stiffness

C.Boragno R.Buzio E.Gnecco F.Buatier U.Valbusa

INFM Unità di Genova Dipartimento di Fisica Università di Genova Via Dodecaneso 33 16136 Genova Italy PRA CLASS ASI Contract