Nanotubes & Nanostructures 2001

Step bunching design on vicinal Si(111) surface at high temperature.

SZKUTNIK Pierre David

Supervisors: M. Hanbücken

F. Arnaud d'Avitaya

Aim of this study

Preparation of a silicon (111) substrate by self-organization.

Application for:

- Self-assembling of nanostructures
- Nanotechnology

Glossary

Azimuth angle

Multivicinal surface

Vicinal surface

 $\Phi_0: 1.5^{\circ} \sim 10^{\circ}$

Azimuth: [112]

Array of multivicinal surfaces

Elaboration

The fabrication is made in 2 stages:

2, Chemical etching (HNO₃:HF:CH₃COOH)

By selective etching, an array of holes is patterned in the silicon wafer.

Elimination of the remaining resin.

Features design of the mask

The mask used is designed to give specific geometric characteristics:

Zoom on one zone of the mask:

(Pitch: distance between 2 holes)

Samples patterning

Array of holes of 6 µm diameter.

SEM

AFM

Preparation for thermal treatment

- We cut the sample to the size of 5×15 mm².
- Cleaned by a chemical solution : Selectipur.
- Thermal treatment: Heated by a Direct Current under UHV (10⁻¹⁰ Torr) in one STM/MBE chamber.
 - Degazing and cleaning.

Annealing of a single cavity

SEM pictures

6 μm cavity as-elaborated.

Annealing at 1475 K during 30 min.

Current Effect

 \vec{J} : [1 $\vec{1}$ 0]

Anisotropic shape

Without Current

The shape of hole is symmetric.

→ [112]

Annealing of a single cavity

SEM pictures

6 μm cavity as-elaborated.

Annealing at 1475 K during 30min.

Current Effect

 \vec{J} : [1 $\vec{1}$ 0]

Anisotropic shape

Without Current

12 facets are present.

[112]

Step bunching in the hole

SEM picture A hole annealed \vec{J} : [112].

STM picture
A part of hole after a flash
at 1475 K.

Effect of the annealing

For a single cavity heated at 1475 K during 30 min:

- Hole diameter increases (×4).
- No current → Faceting and isotropy.
- With current → Step bunching and anisotropy

Interaction within an array of cavities

Array of cavities: diameter 6 μm. pitch 7.5 μm.

Formation of step bunch

Annealing at 1475 K by direct current.

No more evolution

With the time the bunches are stable and step edges are more and more straight.

Influence of polar angle Φ_0

In function of the **depth of hole** (h) and the **pitch** (p), there are 3 cases depending on the aspect ratio:

$$h/p = \tan \Phi$$

Evolution of the interactionbetween cavities

Array of holes

With an array of holes, a regular step bunching is produced.

The parameters of this array are given by the pitch of the initial array of holes.

What about current effect?

Initial surface 8 µm diameter

Annealing at 1475 K

Orientation of the macro-bunch

The orientation is principally given by the direction of the array.

Conclusion

→ We succeeded in the fabrication of patterned substrate with specific geometric features :

Regular array of straight step bunches.

- \rightarrow Can be varied:
 - Periodicity (width of terraces).
 - Height of the bunch.
 - Design (straight or cross hatch patterns).
- → Mechanism is due to the step bunching.

Electromigration plays a role but does not disturb the final equilibrium shape.