Diffusion and Anchoring of large Organic Molecules on Cu(110)

Federico Rosei, M. Schunack, E. Laegsgaard, I. Stensgaard and F. Besenbacher

CAMP and Institute of Physics and Astronomy

University of Arhus, Denmark

E-mail: ico@ifa.au.dk

http://www.ifa.au.dk/camp/

Introduction

- Large Organic Molecules:
 - **Building Blocks in Nanoelectronics devices**
 - Static behavior: anchoring and ordering on surfaces
 - Dynamic behavior (e.g. Diffusion on Metal Surfaces)
 - Nanomechanics? Nanomachines?
- Model systems in molecular electronics:
 - Two closely related molecules, DC and HtBDC
 - Conducting backbone (aromatic π system)
 - Spacer legs (bulky aliphatic groups)
 - Diffusion studies
- Investigation of molecule surface interactions:
 - "Lander" Molecules
 - influence of spacer groups
 - conformation of the molecules
 - effect of the surface (is the surface a staticcheckerboard)

Related Organic Molecules

DC molecules on Cu(110)
 (Decacyclene): C₃₆H₁₈
 Disk – like aromatic molecule

- HtBDC molecules on Cu(110)
 - (Hexa tert butyl Decacyclene): C₆₀H₆₆
 - Aromatic core (resembling DC)
 - six tert butyl groups (- C4H9) attached to the core

The groups act as spacers => separation of the π - system from the substrate

Previous Studies

- HtBDC on Cu(001):
 - –J.K. Gimzewski et al., Science 281 (1998) 531:
 - Rotation of a Single Molecule Within a Supramolecular Bearing
- HtBDC on Cu(110):
 - -M. Schunack et al., Phys. Rev. Lett. 86 (2001) 456
 - HtBDC molecules locally restructure the surface
 - -M. Schunack et al., Angewandte Chemie 40 (2001) 2623:
 - The induced restructuring is chiral
- Diffusion Studies (few on large organic molecules):
 - –PVBA on Pd(110), J. Weckesser et al., J. of Chem. Phys. 110 (1999) 5351
 - -C₆₀ on Pd(110), J. Weckesser et al., Phys. Rev. B <u>64</u>, 161403 (2001)

HtBDC on Cu(110): Mobility at Room Temperature

Formation of double rows of molecules with zig – zag shape

propeller

boat

streaks from fast diffusing molecules (probably dragged by the tip)

M. Schunack et al., PRL 86, 456 (2001)

HtBDC on Cu(110)

hexa-tert-butyl decacyclene ($C_{60}H_{66}$): deposition at RT Molecules imaged as having 6 lobes = 6 spacer legs

RT 25 K

200x200 Å2

RT: Intermediate streaks from fast diffusing individual molecules

M. Schunack et al., PRL 86, 456 (2001)

Manipulation with STM

Pushing molecules aside at reduced tip-sample distance: Restructuring of the surface underneath the molecules

Adsorption of large organic molecules on metal surfaces can be associated with a disruption of the substrate

Chirality and Leg Conformation

Holes are chiral due to the presence of kink sites:

- Chirality "imprinted" by chiral molecules
- Understanding of underlying processes may lead to new route for nanostructuring surfaces in a controlled manner

Experimental Set - up

- UHV Chamber: p < 1x10⁻¹⁰ mbar
- Standard Surface Science Techniques:
 - Auger Electron Spectroscopy
 - LEED
- Variable Temperature STM (100 400 K) fast scanning
- Standard Sputtering / Annealing for preparing the Cu(110) surface
- Organic Molecular Beam Deposition (OMBD): crucible heated with a filament

Related organic molecules on Cu(110) on Cu

decacyclene (DC, C₃₆H₁₈): 220 - 250 K

Cu(110) = RT, T_{powder} = 430 K

on Cu(110): (50 × 50 Å²)

 $T = 96 \, \text{K}$

hexa-(tert-butyl)decacyclene (HtBDC, C₆₀H₆₆): 170 - 200 K

Cu(110) < 250 K, T_{powder} = 450 K

 $T = 25 \, \text{K}$

spacers groups \rightarrow separation of the π - system from the substrate

DC Movies

1 D Diffusion along the close packed direction [110] of Cu(110)

500x500 Å² T = 235 K

15 seconds per image

 $500x500 \text{ Å}^2$ T = 251 K

1 N <u>image size:</u> compromise between good statistics and good resolution

M. Schunack et al., in preparation

HtBDC Movies

1 D Diffusion along the close packed direction [110] of Cu(110)

500x500 Å² T = 194 K

15 seconds per image

500x500 Å² T = 203 K

V = - 1768 mV I = - 0.61 nA

M. Schunack et al., in preparation

Diffusion Theory – Data Analysis

- "Tracer" Diffusion Coefficient:
 - $D = \langle (\Delta x)^2 \rangle / 2t$ (1-d diffusion)
- Arrhenius behavior:
 - $-D = D_0 \exp(-E_D/kT)$
- Hopping rate (measured directly):
 - $-h = h_0 \exp(-E_D/kT)$
 - Hopping rate: counting the proportion of molecules that have not moved between two consecutive images:

$$P_0 = M / N = F(ht)$$

- Link:
 - $-<(\Delta x)^2>=\lambda^2 h t$, where λ is the 'jump length'

Hopping Histograms: HtBDC

Histograms of Hopping probability of the HtBDC Molecule: three different Temperatures

- Symmetric
- Mean value close to 0
- => No tip influence

Controlled manipulations

• DC: ≤ 100 M_

HtBDC: ≤ 500 M_

Values far below usual imaging conditions (about 5 G)

M. Schunack et al., in preparation

Arrhenius Plot - 1

First Method:

Analysis of Mean Square Displacement

 $D = D_0 \exp(-E_D/kT)$

Arrhenius Plot - 2

Second Method: Analysis of hopping rate

Comparison of Results

Relevant parameters reported in table below:

	DC 🌑		HtBDC		
	<(∆x)²>	hopping rate	<(∆x)²>	hopping rate	
E _D (eV)	0.76±0.07	0.78±0.03	0.60±0.04	0.61±0.04	
h ₀ (s ⁻¹)	25	1016.2±0.6		1014.6±1.1	
D ₀ (cm ² s ⁻¹)	10 ^{-0.8 ± 0.9}		10 ^{0.5±1.0}	_	

molecular structure: aromatic π -system binds stronger to surface

M. Schunack et al., in preparation

Discussion - jump length

new approach: $D = \lambda^2 h$

- no jump length distribution required
- large RMS jumps treatable
- avoids huge error bars of prefactors

comparison: $D_0 = -\lambda^2 h_0$

DC: $\lambda = 1 \pm 10 \text{ Å}$;

HtBDC: $\lambda = 13 \pm 13 \text{ Å}$

 λ_{metals} « $\lambda_{\text{molecules}}$: low friction model, energy dissipation through internal modes

Discussion – prefactors 1

2 - 3 orders of magnitude above "standard" values

	"standard"	DC DC	HtBDC
h ₀ (s ⁻¹)	10 ¹³	10 ^{16.2 ± 0.6}	10 ^{14.6} ± 1.1
D_{o} (cm ² s ⁻¹)	10 ⁻³	10 ^{-0.8 ± 0.9}	10 ^{0.5 ± 1.0}

When the resolution is sufficient, it is possible to observe rotation of single molecules, coupled to diffusion: this provides a reasonable explanation for the high prefactors observed

Discussion – prefactors 2

- $h_0 = v_0 \exp(S_D/k)$ and $D_0 = (v_0 \lambda^2/2) \exp(S_D/k)$
- S_D ≈ 0 for metal on metal diffusion
- large molecules: S_D > 0
 (many internal degrees of freedom)
 - conformational changes over the diffusion path (e.g. rotation: rotational motion detectable on top of diffusion!)
- long jumps: assumption of standard values not appropriate

[001]

Conclusions – Part 1

- Comparison of Diffusion of related large organic molecules on Cu(110):
 - HtBDC DC
 - Two methods for data analysis:
 - Mean square displacement
 - Hopping rate

Measurement of:

- measurement of.
- Activation Energy: Higher for DC stronger interaction with the substrate
- Prefactor: 2 3 orders of magnitude above standard values
- Attempt frequency

Part 2: Anchoring of large molecules

- "Lander" Molecule on Cu(110):
 - -3,5-di-tert-butylphenyl: C₉₀H₉₈

Molecular wire

Properties:

- Conducting backbone
 (polyaromatic wire terminated by a fluoranthene group)
- 4 spacer legs for "isolation" from the substrate

 (Tbp substituents)
- Basic idea: interconnect the molecule to a step edge

Ball model

STM imaging of the Lander

- Imaged by STM as four lobes => four spacer legs
- Two possible conformations, rectangular or parallelogram like

Lander on Cu(110)

F. Rosei et al., in preparation

Previous studies

Lander molecule on Cu(100):

- Langlais et al., "Spatially resolved tunnelling along a molecular wire" *Phys. Rev. Lett.* 83 (1999) 2809
- –M. Magoga and C. Joachim, "Conductance of molecular wires connected or bonded in parallel", *Phys. Rev. B* 59, 16011 (1999)

CAMP Sets for Personal Preside Nigota

Lateral manipulation of single atoms and molecules with the STM

Constant current or constant height mode

Tunneling resistance V / I measures tip – sample separation: I ~ V exp(-2kz)

reducing the tunneling resistance means approaching the surface: stronger tip – surface interaction

Step Restructuring on Cu(110)

- Deposition at room temperature submonolayer coverage: decoration of step edges
- Low temperature manipulations: the molecules are anchored to the step edge

300 x 300 Å2

F. Rosei et al., in preparation

Step Restructuring

- Formation of a "nano contact"
- The width of the nano contact is 2 Cu atomic rows

Width: $< x> = 7.5 \pm 0.5 \text{ Å (} \sim 2 \text{ atoms)}$

Controlled STM Manipulation

Using controlled STM manipulation, it is possible to slide a molecule until it just barely touches the edge of the nano contact it has previously formed

Nano – contact: to be shown by finding a signature, e.g. with tunneling spectroscopy

Theory vs. Experiment 1

linescan across two lobes

calculated cross - section

Experimental Line - scan

Elastic Scattering Quantum Chemistry (ESQC)

+ Molecular Mechanics (MM2)

F. Rosei et al., in preparation

Theory vs. Experiment 2

conformation

calculated cross - section

The conformation of the Lander on the nano – contact has been successfully extracted

F. Rosei et al., in preparation

Theoretical Simulations

Simulated STM image

Molecule on Nano contact

tunneling parameters are the same as in experiments

Collaboration with P. Jiang and C. Joachim (CNRS Toulouse)

Thermally activated process

Cu(110) step edge fluctuates very rapidly even well belowRT

500x500 Å² **T = 235 K**15 seconds
per image

Upon deposition at low temperatures (about 150 K), no restructuring is found:

the process is thermally activated

F. Rosei et al., in preparation

Conclusions – Part 2

- The Lander Molecule is able to create its own nano-contact on Cu(110)
- The nano-contacts are formed by a thermally activated process
- The width of the nano contacts is two Cu atomic rows
- Theoretical simulations (CNRS Toulouse)
 have been performed to extract the exact
 conformation of the molecule on the
 surface, and on the structure

Latest Results

O₂ chemisorption on Cu(110): partial 2x1 reconstruction ("patches")

35x35 Å2

20x20 Å2

Nanopatterning Cu(110)

100x100 A2

Lander molecules adsorb on bare Cu areas

It is possible to resolve the 2x1 structure along with the molecules

Nanopatterning 2

300x300 Å²

the Lander adsorbs at the edge of the Cu / Cu-O interface, and it forms long rows of"molecular wires"

Acknowledgements

- Michael Schunack (HtBDC studies, Diffusion studies)
- Senior Members:
- Erik Lægsgaard
- Ivan Stensgaard
- Flemming Besenbacher
- CEMES Toulouse:
 - A. Gourdon (synthesis of molecules)
 - P. Jiang, C. Joachim (calculations, simulated STM images)