Electronic and optical properties
of quantum dots

T. K. Johal

National Nanotechnology Laboratory INFM- Unita di Lecce, Dip.
Ingegneria, Dell'lnnovazione, 73100 Via Per Arnesano, Lecce

"~ National Nanotechnology Laboratory

. ' _ of INFM



Outline of lectures

Basics of quantum dot
Structural properties

Ensemble QD properties

Theoretical methods and predictions
+ Envelope function approach
+ k.p method
+ Pseudopotential method

The experimental reality
+ Single QD tunneling spectroscopy
+ Single QD optical properties

+ Single QD tunneling current induced optical
properties



Multi-particle interactions
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Scanning tunneling
spectroscopy of single
In, .Ga, -As quantum dots

=« lunnhel into the discrete, localized states
of the quantum dot

= Examine spatial maps of the tunneling
current

s Seek to map the spatial distribution of
charge density associated with QD

states



Tunneling current spectroscopy
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gutrface topography of uncappedinGaAs quantum
ots

Dot density is sufficiently low (3x10
cm?) -- no interaction between dots

Octagonal base, side-walls
combination of {111} and {110} facet
planes
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Tunneling current spectra
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Current imaging tunneling spectroscopy of a
single quantum dot




A phenomenological approach

.............................................

Wetting layer, d -~ ;:

Assume the QD shape is a truncated cone, because of the
cylindrical symmetry can solve the Schrodinger equation
analytically, i

. (F) = on U"m(.ﬂ: Z)
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with /I=0for S-like levels, /==1 for P-like levels...
For the bound levels we consider theseparable form

Y — Envelope function

wavefunction

M(0.2) = Ey(0)9(2)

Where N,, are normalization constants and a (=1, the
coefficients are obtained by othornormalization.



Calculating the tunneling current

Following Tersoff and Hammer
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for the tunnelling current,where n, 1, j are the quantum numbers labelling the

dot bound states, k is the 2D wavevector of the wetting layer eigenstates and
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Simulating QD topography

—— Calculated tip position
= Wetting Layer
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Calculated tunneling current spectra

= Spatially
resolved
calculation

« Higher intensity
at center of QD
« Reduced

tunneling

. J l )/! .\
currentin WL | . | | . .
reginn ss -0e3 -Da0 -087 -054 051 048

sample bias (V)

(iii)
(ii)

Tunneling current (arb. units}




Calculated tunneling current profiles
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The relaxation processes
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Origins of observed current contrast

«» Measure a permanent current due to exchange of
carriers with host

+ Thermal activation
+ Tunneling into WL
= "Unoccupied levels” are already filled
+ N-type doped material, a reservoir of electrons
+ |nevitable high density of surface defect states
= Charging of the dots

+ Addition energy
¢ Perturbing the system
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Tunneling current induced
luminescence of InGaAs QDs

= Combine
¢ Controlled carrier injection of STM
& With luminescence

= Seek

¢ Influence of electrical injection into QD - similar
to mini-laser device structure

¢ [0 understand the influence of hole-hole
correlation effects in multi-particle systems



Experimental set up

Optical fibre
collection of signal
0.3m
monochromator lens to collect
Cooled Si charge Bt o \ /1
coupled device
. Spectral resolution STan To monochro-

mator and CCD

in the region of
1000nm is 0.25meV £

All measurements
made at 70K in UHV
conditions.
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Planar-view dark-field TEM image of
capped sample

oNo extended defects
eDot density: 4x101%/cm?
eLarge distribution of
sizes—--two main families
of QD radii
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Comparing structural statistics extracted

from the TEM measurements to ensemble

photoluminescence

I I I
QD photoluminescence
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Voltage dependence of STM-induced
luminescence

» Tunneling current of
0.5nA.

STM induced
luminescence shows

sharp lines, 2-4meV
broad.

Ballistic holes
captured by QD via
complex energy
relaxation

120 L2a 1.30
Photon energy (eV)

No evidence of shifts
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Current dependence of STM-induced luminescence
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Tunneling current
dependent spectra,
measured using a
gap voltage of -1.3V

Comparing with low
power PL signal

State filling effects
are eviden

excited excitonic
states appear with
increasing tunneling
current



Mechanism of tunneling current induced
luminescence

= Vacuum tunneling from tip to GaAs cap layer.
= Injection of holes into the GaAs cap layer.

= Transport within cap layer ballistic holes
captured by WL states.

= Relaxation into QD states

= Radiative recombination.
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What is happening??

Luminescence observed
only when

¢ Injection of holes into
the GaAs cap layer

¢ tunneling out of

occupied states —— =gy — No bias

hole injection ; ' e
+ For voltages larger E'm_

than -1.5V —- flat band ek |

conditions for 20~

radiative 0 100 200 300 400

recombination Distance from sample surface (nm)

Flat band conditions for
luminescence
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From current and
voltage dependence

QD ensemble PL cmission
~ ¢ Energy-loss processes
N\ promote mobility in the
plane of the dots

: ) ¢ Initial capture by smaller

. HighT dots

("_“-Qg ¢ Followed by occupation of
P W Y

r__|1 E,, other dots
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Spectra measured at different points

= Single dot spectra
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Coupled quantum dots
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= Symmetric and anti-
symmetric bonding
states of QD molecule

= With increasing
tunneling current there
is a change in relative
intensity

= A blue shift with
increasing hole current



Conclusions

= Complex hole relaxation processes—--k-space
scattering

= Inter dot tunneling seems evident due to the
appearance of many sharp peaks in the
luminescence spectra-—--formation of coupled
dot states, artificial molecule-like states

= State filling effects, as QD states are occupied
further injected holes compelled to fill other

7 QD states.
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