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Outline of lectures

Basics of quantum dot
Structural properties

Ensemble QD properties

Theoretical methods and predictions
+ Envelope function approach
+ k.p method
+ Pseudopotential method

The experimental reality
+ Single QD tunneling spectroscopy
+ Single QD optical properties

+ Single QD tunneling current induced optical
properties



Optical and electronic
roperties of self-assembled

Ny 50080 50AS QDs

Exhibit shell structure typical of atoms

¢ Charging energy directly reflects the small
overlap between the s— and p-state as compared
to two s— or two p—states

¢ Show the influence of the electronic shell
structure on the Coulomb repulsion

= However in optical spectra these phenomena are
masked due to inhomogeneousbroadening



Ensemble QDs:
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8D ensemble properties:
hotoluminescence

lllumination by Ar laser, 488nm
line, sample temperature 30K

» Broad QD spectra, at
least 30 meV broad

« Power dependence, |
evidence of state filling Pkl
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QD ensemble
characteristics

A distribution of QD size and shape.

Usually 10% variation of size and 1% variation of
alloy composition

Broadening of spectral features of at least 30
meV

Phenomena such as correlation effects are
masked
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Multi-particle interactions
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Single dot spectroscopies

= |solate signal from a single QD
= Measure photoluminescence

= Inspect binding energy shifts of spectral
features with increasing electron-hole pair
formation




Scanning probe microscopies

= Micro photoluminescence
¢ low cost, large depth offocus
¢ sub—micron spatial resolution
= Scanning near optical microscopy
+ spatial resolution 100nm
= Scanning tunneling microscopy
¢ Atomic resolution
= Scanning tunneling luminescence

¢ controlled injection of carriers

¢ spatial resolution limited only by diffusion and
capture of carriers
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Micro-photoluminescence
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M. De Vittorio, A. Melcarne, R. Rinaldi, and R. Cingolam,
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Effects of few-particle @
Interactions on the atomic-like
levels of a single strain-induced
quantum dot

s Seek evidence of atomic-like transitions

Spectral line-widths not limited by
Inhomogeneous broadening due to structural
variations

= |nvestigate correlations effects

R. Rinaldi, S. Antonaci, M. DeVittorio, R. Cingolam, U.
Hohenester, E. Molinari, Harri Lipsanen and Jukka Tulkki,
Notionsl Namotechmology bakerstery . Plie Rev. B62, 1592 (2000)
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Schematic of heterostructure

InP stressor QD

GaAs 20nm bh
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InGaAs 8nm

quantum well

GaAs barrier../

Grown by molecular

W vapor phase epitaxy




Stressor to create quantum confinement in InGaAs

quantum well

PL

induced QD ‘
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Parabolic-like strain
potential laterally
confines the carriers

in the InGaAs QW
under stressor.
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Sample processing

To achieve spatial
resolution physically
isolate QD.

By nanolithography,
using an atomic force
microscope and HCl wet
etching, create a mesa
structure

A
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Mesa structure to
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Power intensity dependent PL
spectra at 20K
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Experimentally observed

Ensemble PL:
1Z (ground state)

111, 22, 2I1 (excited states)

FWHM : ~ TmeV

Single QD:
12 (ground state)

111, 2=, 2I1 (excited states)

FWHM :~ 0.8 meV



Many particle interactions

=« Luminescence involves the removal one e-
h pair from the interacting many-particle
system, and one photon is created.
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The single-particle states derived by solving
single-particle Schrodinger equation within the
envelope-function and effective-mass
approximations.
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Conclusions

=« Agreement between experiment and
theory confirms that photoexcited
electrons and holes are strongly confined
in the QD

= QD behaves as an artificial atom

= Confinement induces a strongexciton

binding energy and significant coupling
between excitons



Scanning near-field optical

microscopy
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Single dot phololuminescence

of In, -,Ga Ds formed b
self é]fgemol?f#s Q d

Isolate a single QD by a combination of electron
beam lithography and HCI etching

Near field excitation

Far field collection by cooled SiCCD



Self assembled, strain driven
InGaAs QD growth

Stranski-Krastinov, beyond y
critical thickness, 2D-3D GaAs substrate, Deposition of

T § G tht InAs < 1.7TML
transition, coherently strained 5;::: emg
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Narrow size and shape
distribution Deposition of  GaAs capping
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SNOM spectra from InGaAs
quantum dots

l[lumination
by Ar laser,
488nm line

Power

dependence
measuremen
ts from 0.2 to
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Power dependence measurements
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Conclusions

= Power Intensity dependence shows:
¢ At lowest powers S-shell neutral excitonic emission.

¢ |Increasing power appearance evolution of biexciton
and charged exciton emission.

¢ State-filling phenomena evident with the appearance
of the P-shell emission

+ Red shift of biexcitons and charged excitons



