Electronic and optical properties of quantum dots

T. K. Johal

National Nanotechnology Laboratory INFM- Unita di Lecce, Dip. Ingegneria, Dell'Innovazione,73100 Via Per Arnesano, Lecce

Outline of lectures

- Basics of quantum dot
- Structural properties
- Ensemble QD properties
- Theoretical methods and predictions
 - Envelope function approach
 - k.p method
 - Pseudopotential method
- The experimental reality
 - Single QD tunneling spectroscopy
 - Single QD optical properties
 - Single QD tunneling current induced optical properties

Optical and electronic properties of self-assembled In_{0.50}Ga_{0.50}As QDs

- Exhibit shell structure typical of atoms
 - Charging energy directly reflects the small overlap between the s- and p-state as compared to two s- or two p-states
 - Show the influence of the electronic shell structure on the Coulomb repulsion
- However in optical spectra these phenomena are masked due to inhomogeneous broadening

Ensemble QDs:

TEM image planar view, 002 zone axis

TEM image cross sectional view, 110 zone axis

QD ensemble properties: Photoluminescence

- Broad QD spectra, at least 30 meV broad
- Power dependence, evidence of state filling
- Ground state exciton senergy
- With higher excitation power emission from excited excitonic states
- Intra-level spacing

Illumination by Ar laser, 488nm line, sample temperature 30K

QD ensemble characteristics

A distribution of QD size and shape.

Usually 10% variation of size and 1% variation of alloy composition

Broadening of spectral features of at least 30 meV

Phenomena such as correlation effects are masked

Multi-particle interactions

Exciton

Bi-exciton

Single dot spectroscopies

Isolate signal from a single QD

- Measure photoluminescence
- Inspect binding energy shifts of spectral features with increasing electron-hole pair formation

Scanning probe microscopies

- Micro photoluminescence
 - low cost, large depth of focus
 - sub-micron spatial resolution
- Scanning near optical microscopy
 - spatial resolution 100nm
- Scanning tunneling microscopy
 - Atomic resolution
- Scanning tunneling luminescence
 - controlled injection of carriers
 - spatial resolution limited only by diffusion and capture of carriers

Micro-photoluminescence

- In-house built set up
- Sub-micron spatial resolution
- Large depth of focus
- Large image scan area
 25×25mm²

M. De Vittorio, A. Melcarne, R. Rinaldi, and R. Cingolani, Rev. Sci. Instrum. 72, 2610 (2001)

Effects of few-particle interactions on the atomic-like levels of a single strain-induced quantum dot

- Seek evidence of atomic-like transitions
- Spectral line-widths not limited by inhomogeneous broadening due to structural variations
- Investigate correlations effects

R. Rinaldi, S. Antonaci, M. DeVittorio, R. Cingolani, U. Hohenester, E. Molinari, Harri Lipsanen and Jukka Tulkki, Phys. Rev. B62, 1592 (2000)

Schematic of heterostructure

Stressor to create quantum confinement in InGaAs quantum well

Sample processing

To achieve spatial resolution physically isolate QD.

By nanolithography, using an atomic force microscope and HCl wet etching, create a mesa structure

Power intensity dependent PL spectra at 20K

R. Rinaldi, S. Antonaci, M. DeVittorio, R. Cingolani, U. Hohenester, E. Molinari, Harri Lipsanen and Jukka Tulkki, Phys. Rev. B62, 1592 (2000)

Experimentally observed

Ensemble PL:

1 Σ (ground state)

1 Π , 2 Σ , 2 Π (excited states)

FWHM:~7meV

Single QD:

 1Σ (ground state)

 1Π , 2Σ , 2Π (excited states)

FWHM : ~ 0.8 meV

Many particle interactions

Luminescence involves the removal one eh pair from the interacting many-particle system, and one photon is created.

$$I(\omega) \propto \sum_{n,n'} f_T(E_n^N) |\langle n'; N-1| \hat{\pi} |n; N \rangle|^2 \mathcal{D}_{\gamma}(\omega - E_n^N + E_{n'}^{N-1}).$$

The single-particle states derived by solving single-particle Schrodinger equation within the envelope-function and effective-mass approximations.

1 Σ bi–excitons of spin up and and tri–exciton of spin up

1 Σ bi-excitons of spin up and spin down and tri-exciton

 1Σ bi-exciton of spin up and 1Σ excitons spin down

 1Σ excitons of spin up and spin down

1 Σ exciton

Conclusions

- Agreement between experiment and theory confirms that photoexcited electrons and holes are strongly confined in the QD
- QD behaves as an artificial atom
- Confinement induces a strong exciton binding energy and significant coupling between excitons

Scanning near-field optical microscopy

•low temperature (20 - 300K)SNOM of aperture type (optical fibre) Spatial resolution 100nm

M. Lomascolo, University of Lecce, Lecce Italy

M. Labardi, M. Allegrini INFM UdR Pisa, c/o Dipartimento di Fisica Università di Pisa, [taly]
S. Patanè INFM, UdR Messina, Dipartimmeto di ingegneria, Univ. di Messina Italy

Single dot phololuminescence of In_{0.50}Ga_{0.50}As QDs formed by self assembly

Isolate a single QD by a combination of electron beam lithography and HCl etching

Near field excitation

Far field collection by cooled SiCCD

Self assembled, strain driven InGaAs QD growth

- Stranski-Krastinov, beyond critical thickness, 2D-3D transition, coherently strained islands
- Narrow size and shape distribution
- Growth process is thermodynamically driven, long range elastic interaction

GaAs substrate, Growth temp 580°C

Deposition of InAs > 1.7ML

Deposition of InAs < 1.7ML

GaAs capping layer

SNOM spectra from InGaAs quantum dots

Illumination by Ar laser, 488nm line

Power dependence measuremen ts from 0.2 to 9 microWatts

Energy (eV)

Line-width broadening

Peak position

Conclusions

- Power intensity dependence shows:
 - At lowest powers S-shell neutral excitonic emission.
 - Increasing power appearance evolution of biexciton and charged exciton emission.
 - State-filling phenomena evident with the appearance of the P-shell emission
 - Red shift of biexcitons and charged excitons