More complex situations ...

- Crossed single-wall nanotubes (SWNTs):
 Coulomb drag and transmitted shot noise
- Tunneling DOS of multi-wall nanotubes (MWNTs)

Crossed Nanotubes

Komnik & Egger, PRL 80, 2881 (1998); EPJB 19, 271 (2001)

assume adiabatic coupling to leads⇒ use radiative boundary conditions

Coupling?

Assume effectively point-like, not too strong coupling

Two coupling mechanisms:

1. Tunneling

Tunneling irrelevant under RG \Rightarrow can be ignored for weak tunneling

2. Electrostatic coupling

Coulomb coupling is relevant for g < 1/2

 \Rightarrow transport strongly affected for g < 1/2

Model: Luttinger bosons $\varphi_{1,2}(x)$ plus local electrostatic coupling at x=0

$$H = H_0^{(1)} + H_0^{(2)} + C \cos[\sqrt{4\pi g} \varphi_1(0)] \cos[\sqrt{4\pi g} \varphi_2(0)]$$
$$+ H_0^{(i)} = \frac{v_F}{2} \int dx \left(\Pi_i^2 + (\partial_x \varphi_i)^2 \right)$$

Switch to new boson fields:

$$\varphi_{\pm}(x) = [\varphi_1(x) \pm \varphi_2(x)]/\sqrt{2}$$

⇒ Hamiltonian and boundary conditions completely decouple in new fields

Net result:

Two effective single-impurity problems in the \pm sectors living at doubled interaction parameter $g \rightarrow 2g$ and effective applied voltage U_{\pm} :

$$H = H_{+} + H_{-}$$

$$H_{\pm} = H_{0}^{(\pm)} + C \cos[\sqrt{8\pi g} \varphi_{\pm}(0)]$$

$$U_{\pm} = (U_{1} \pm U_{2})/\sqrt{2}$$

- ⇒ take over exact solution of single-impurity problem
- ⇒ Dependence of current on current in other SWNT?

Coulomb drag

Coulomb drag

Characteristic dependence of current I_1 on applied cross voltage U_2 , shown for g=1/4:

- Perfect zero-bias anomaly for small U_1, U_2
- Dips for $U_1 = 0$ are turned into peaks for finite U_2 , with minima for finite U_1
- ullet For Fermi liquid, no singular dependence on U_2 , and no U_1 dependence of conductance
- Absolute Coulomb drag

For extended contact, the linear transconductance is universal and maximal:

$$G_t = \frac{\partial I_1}{\partial U_2} \bigg|_{U_1 = 0} = \frac{e^2}{2h}$$

Experimental evidence for crossed Luttinger liquid

Kim et al., J. Phys. Soc. Jpn. 70, 1464 (2001)

 I_1-U_1 characteristics, parameterized by cross voltage $U_2=-20meV,\ldots,20meV$

- Zero-bias anomalies for small voltage
- Conductance dip becomes a peak by increasing cross voltage

Coulomb drag shot noise

Trauzettel, Egger & Grabert, cond-mat/0109022

Shot noise at T=0 gives important information beyond conductance

$$P(\omega) = \int dt e^{i\omega t} \langle \delta I(t) \delta I(0) \rangle$$

with current fluctuation δI

For weak impurity, DC shot noise of one SWNT is

$$P = 2eI_{\mathsf{BS}}(U)$$

with backscattered current I_{BS}

Now crossed nanotubes:

Imagine $U_1 = 0$ and $U_2 = U \Rightarrow$ any shot noise power $P_1 \neq 0$ must be due to applied cross voltage (Coulomb drag shot noise)

Shot noise power transmitted from one SWNT to the other?

Mapping to \pm sectors goes through \Rightarrow due to decoupling $H=H_++H_-$ correlators between φ_+ and φ_- vanish

Consequence: Perfect shot noise locking

$$P_1 = P_2 = (P_+ + P_-)/2$$

- noise $P_1 \neq 0$ due to cross voltage
- exactly equal to P_2
- requires strong interactions: g < 1/2
- survives thermal fluctuations

Luttinger liquid in MWNTs?

Differences to SWNTs:

- Overall energy scales are smaller
- Tunneling from the outermost into inner shells?
- Screening of the electron-electron interaction?
- Scattering potential due to inner shells?

Tunneling between shells

In bulk 3D graphite, tunneling between 2D
sheets implies quantum coherence
perpendicular to sheets
⇒ metallic behavior, band overlap

In MWNTs, this effect is strongly suppressed

- Statistically only 1/3 of all shells metallic (random helicity distribution) since inner shells are not doped
- Even if adjacent shells both metallic, momentum mismatch $k_{F,n} \neq k_{F,n+1}$ spoils inter-shell coherence
- Electron-electron interactions suppress one-electron tunneling

Modified Screening in MWNT

Egger, PRL 83, 5547 (1999)

Long-range tail of interaction still unscreened ⇒ Luttinger liquid effects would survive in a ballistic MWNT

Characteristic dependence on number $N \approx$ 20 of available spin-degenerate bands (due to doping or inner shells)

$$g = \left\{1 + \frac{8e^2N}{\pi\kappa\hbar v_F} \ln[L/2\pi R]\right\}^{-1/2}$$

scales to zero as $N^{-1/2}$ for large N

⇒ Luttinger parameter is strongly reduced for MWNT

Suppressed Luttinger exponents

Does reduction of g imply stronger Luttinger liquid effects in MWNTs?

End-tunneling exponent is also N-dependent:

$$\eta_{
m end} = rac{(1/g) - 1}{2N} \sim N^{-1/2}$$

⇒ slow approach to Fermi liquid

⇒ end/bulk tunneling exponents are one order smaller than in SWNTs

Other exponents?

Temperature dependence of weak backscattering corrections, $\delta G \sim T^{-p}$,

$$p = \frac{1 - g}{2N} \sim 1/N$$

decays much faster with N, extremly small

Ionic potential due to inner shells

- Inner shells never align with the outermost shell
- Quasiperiodic incommensurate inner-shell ionic potential
- Effectively diffusive behavior even for clean MWNT, mean free path $\ell \approx 10R$
- include "true" disorder: $\ell \approx 5$ to 100 nm
- MWNT is strongly interacting, weakly disordered metal on a cylinder

Tunneling density of states (TDOS)

Experimental observation of TDOS as conductance through tunnel contact shows pronounced power-law zero-bias anomaly

Bachtold et al., cond-mat/0012262

Scaling plot for $T^{-\alpha}dI/dV$ vs. eV/k_BT very similar to Luttinger liquid!

Tunneling DOS for different geometries:

Tunneling exponents are geometry-dependent again (bulk/end tunneling)

Different power law exponents for

- Gold bulk MWNT contact: $\alpha \approx 0.3$
- End MWNT bulk MWNT contact: $\alpha + \alpha_{\rm end} \approx 0.9$
- ullet End MWNT end MWNT contact: $2lpha_{
 m end}pprox 1.2$

Puzzles to be explained:

• Bulk TDOS shows power law on energy scales $E < v_F/R \approx 0.1$ Volt

$$\nu(E)/\nu_0 \sim E^{\alpha}$$
, $\alpha \approx 0.3$

- End TDOS shows also power law with doubled end exponent $\alpha_{\rm end} \approx 0.6$
- Similar experimental results by other groups
- Ballistic Luttinger liquid theory predicts much smaller exponents
- Perturbative Altshuler-Aronov-Lee (AAL) corrections also inconsistent:

$$\nu(E)/\nu_0 = 1 - \text{const. log}[E\tau] \quad (2D)$$

$$\nu(E)/\nu_0 = 1 - \text{const.} E^{-1/2}$$
 (1D)

Coulomb blockade theory

- Tunneling electron diffuses away and excites electromagnetic modes
- ullet Assumes harmonic modes with spectral density $I(\omega)$
- Probability P(E) to excite mode with energy E:

$$P(E) = \frac{1}{\pi} \operatorname{Re} \int_0^\infty dt \exp[iEt + J(t)]$$

with phase correlation function (T = 0):

$$J(t) = \int_0^\infty d\omega \frac{I(\omega)}{\omega} \left(e^{-i\omega t} - 1 \right)$$

"Debye-Waller" factor

Intrinsic Coulomb blockade in MWNTs

Egger & Gogolin, PRL 87, 066401 (2001)

P(E) determines TDOS

$$\frac{\nu(E)}{\nu_0} = \int dE' \frac{1 + \exp(-E/k_B T)}{1 + \exp(-E'/k_B T)} P(E - E')$$

For constant spectral density $I(\omega) \approx I(0)$:

 \Rightarrow power law for TDOS with $\alpha = I(0)$

Central idea: AAL corrections reflect Coulomb blockade, but strong interactions require non-perturbative treatment

⇒ Coulomb blockade by intrinsic electromagnetic modes of disordered interacting system

Nonperturbative theory

- Assume $\ell < 2\pi R$ for algebraic simplicity (not essential)
- ullet Analytical progress possible using nonlinear σ model in saddle point approximation

Kamenev & Andreev, PRB 60, 2218 (1999)

- Approximation essentially semi-classical, good for long-ranged interactions
- ullet Simplest case: effective short-range interaction with strength U_0

Microscopic calculation

- confirms Coulomb blockade theory (harmonic electromagnetic modes)
- yields spectral density of intrinsic electromagnetic modes ($\omega \tau \ll 1$)

$$I(\omega) = \frac{U_0}{2\pi(D^* - D)}$$
Re
$$\sum_n \left[(-i\omega/D^* + n^2/R^2)^{-1/2} - (-i\omega/D + n^2/R^2)^{-1/2} \right]$$

- Field diffusion constant $D^* = D(1 + \nu_0 U_0)$ and charge diffusion constant $D = v_F^2 \tau/2$
- Near end: doubled "boundary" spectral density found from nonlinear σ calculation ⇔ doubled boundary exponent

2D limit

Consider high energies $E>E_T$ above Thouless scale

$$E_T = \frac{D}{(2\pi R)^2}$$

(inverse diffusion time around circumference)

- \Rightarrow summation over n can be converted into integration
- ⇒ gives constant spectral density
- ⇒ power-law TDOS with bulk exponent

$$\alpha = \frac{R}{2\pi\nu_0 D} \ln(D^*/D)$$

tunneling into interacting 2D diffusive metal

2D logarithmic AAL correction exponentiates into power law

But: restricted to $\ell \ll R$

Low energy limit

Consider very small frequency $\omega \to 0$

 \Rightarrow spectral density $\sim \omega^{-1/2}$ due to n=0 mode

 \Rightarrow Coulomb blockade equations predict pseudogap for $E \rightarrow 0$:

$$\nu(E)/\nu_0 \sim \exp(-E_0/E)$$

with

$$E_0 = U_0 / 8\pi \nu_0 D$$

... not yet observed ...

Numerical solution

Egger & Gogolin, cond-mat/0109336

For
$$\ell = 10R$$
, $U_0/2\pi v_F = 1$:

- Power law well below Thouless scale
- Smaller exponent for weaker interaction
- ullet Only small variation in lpha with $\ell/2\pi R$
- Pseudogap at extremely low energies
- Correct description of experiment? Check:
 Pseudogap

Conclusions Lecture 3

- Crossed SWNTs show spectacular consequences of correlations:
 - 1. Unconventional Coulomb drag
 - 2. Absolute Coulomb drag
 - 3. Perfect shot noise locking
- Power-law zero bias anomaly in MWNTs reflects intrinsic Coulomb blockade due to strong interactions in diffusive low-dimensional system
- Prediction: Pseudogap for $E \rightarrow 0$
- Open questions: Universality class of MWNTs? Manifestation of strong interactions in conductivity?