Transport in SWNTs

Typical situation of interest: SWNT in good
contact to leads, with one scatterer (kink)

from: Yao et al., Nature 402, 273 (1999)

Current-voltage relation?



Theoretical description

Focus on charge sector (Luttinger phase) =
with single impurity at x = 0 of strength A

H =L [dw(n2+ 1/6%)(0:9)%)
+ Xcos[vV4r p(0)]

Kane & Fisher, PRB 46, 15233 (1992)

Conceptual difficulty: Coupling to external
leads (voltage reservoirs)? Landauer approach
does not work for interacting systems!

First understand problem of injecting a charge
into a Luttinger liquid ...



Electroneutrality
Egger & Grabert, PRL 79, 3463 (1997)
On large lengthscales, one always has

electroneutrality =
no free uncompensated charges

Inject “impurity” charge @
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= for Luttinger liquid with screened inter-
actions, electroneutrality holds only when in-
duced gate charges are included

Q+ QL+ ante =0
ante — —92Q

QL =—-(1-¢%Q

Without gate: True long-range interaction =
g — 0 = electroneutrality holds for quantum
wire alone!



Screening

e Applied voltage eU = uy, — up

e Left/right reservoir injects “bare” density
of right/left moving charges:

0 KL
—L/2) =
PR( /2) Orhup
0 HR
L/2) =
pr(L/2) drhvp

e Fraction (1 — g2) of injected charge den-
Sity p = pr + py, IS screened off
= charge density in Luttinger wire re-
duced by factor g2



= Relation between true charge density and
“bare” density:

pr(x) + pr(x) = g°[p%(x) + p3 ()]

Difference of right/left-moving densities
(current) unaffected by screening:

pr(z) — pr(z) = pf(x) — pY(z)

Solving these relations for p%(—L/2)
and p%(L/2) gives Sommerfeld-like
boundary conditions for true charge density



Radiative boundary conditions

Egger & Grabert, PRB 59, 10761 (1998)

(g %+ Vpr(FL/2) + (7% F 1)%(4[13/2)
— 4 °

2mhvg

valid for adiabatic contacts to leads, and
for arbitrary correlations g & impurity
strength A\

imposed at long times (stationary non-
equilibrium state) near contacts in the
Luttinger wire

voltage not just additional term in H

preserve integrability, easy to use in
bosonization



Exact solution

Full transport problem can be solved exactly
for arbitrary parameters (g,U,T, \) using
integrability (even including spin)

Egger, Grabert, Koutouza, Saleur & Siano, PRL 84, 3682 (2000)

= complete crossover from weak to strong
transmission

Example: Linear conductance at g = 1/2:
e? 1—(Tg/T)Y'(1/2+ Tp/T)
h 1+ (Tp/T)¥'(1/2 + Tp/T)

with impurity scale Tg = 7\2/kgD and
trigamma function ¥/(z)

G(T) =



Linear transport

Linear conductance (g =1/2)
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e Clear power-law scaling for low tempera-
tures

e conductance vanishes

e Only one impurity!



On low energy scales, impurity becomes
effectively very strong and cuts the SWNT
into two halves

G(T = 0) ~T?" - 0

with end-tunneling exponent n > 0

Doubled exponent in G(T') since one tun-
nels out of one half into the other =
square of the TDOS

p(E) ~ E"



Nonlinear transport

Theory predicts universal scaling functions
for nonlinear conductance.

Example: Weak transmission (strong impu-
rity) limit
dl
T—an x sinh(eU/2kgT)
x |1+ n+ieU/2rkgT)|?{coth(eU/2kgT)
1
—5- IM3(1 +n/2 +ieU/2rkpT)}
T

with digamma function ¥ (z)
= rhs depends only on eU/kgT

. observed experimentally in SWNTs ...



Friedel oscillation

Matveev et al., PRL 71, 3351 (1993)

Why G(T) — 0 for low temperatures (insula-
tor!) for just one arbitrarily weak impurity?

electron

o b

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

[ 1
[ 1

L1

e Impurity generates 2k oscillatory charge
disturbance (Friedel oscillation)

e Incoming electron is backscattered by Hartree
potential of Friedel oscillation (in addi-
tion to “bare” impurity potential)

e Energy dependence < Friedel oscillation
asymptotics



1D Screening

Bosonization gives

5p(z) ~ cos[2kpz — np]{cos[vVar o(z)])

Exact asymptotics (z — o0)
dp(x) ~ cos[2kpx — np] 79

Egger & Grabert, PRL 75, 3505 (1995)

e very slow algebraic decay with interaction-
dependent exponent g < 1

e causes singular backscattering for low
energies

e incoming electron at energy E — O is
completely reflected by Friedel oscillation



Exact Friedel oscillation at ¢ = 1/2 using
conformal field theory
Leclair et al., PRB 54, 13597 (1996)

= again scaling property:
1
Sp(z) = —— cos[2kpa — nple” *BKo(z/zp)
TR
with zg ~ A~1/(1=9)  Bessel function Ky(2)

Reproduces 79 scaling for x > xp

For x < xp different scaling law:

dp ~ CoS[2kpx — np] In(x/zp)

= extremely slow decay



Friedel oscillation in SWNT

Egger & Gogolin, EPJB 3, 281 (1998)

Several competing Fermi momenta:

2qr , 2(kr £qr) , 4qp

Dominant wavelength is interaction-dependent

For g > 0.2 and =z > xpR:

5p(x) ~ cos[2qpz — np)(z/zp)~ 3 19)/4

e same power law for 2(kr £ qF)

e for r K xp slower decay,

Sp(x) ~ (z/xg)~(1T9)/2



For g < 0.2:

ép(x) ~ cosldqrz —npl(z/z)™7, (x> zp)
~ cos[4qrz — np]In(z/zp) , (z <K zR)

= extremely slow decay

e Quite complex and rich behavior of Friedel
oscillation in SWNT

e wavelength and power law depend on
interaction strength

e even more complex behavior in gapped
phases (T < Tp)

e Not yet probed experimentally



Spin-dependent SWNT
transport

Balents & Egger, PRL 85, 3464 (2000)
PRB 64, 035310 (2001)
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Dependence of I(V) on angle 6 between
magnetization directions mj > in the
ferromagnetic reservoirs?

Basic assumption: spin relaxation negligible
due to smallness of spin-orbit coupling
= spin current J = Jr — J;, conserved

Trip = vk, (@)(F/2)%g (@)

induced SWNT magnetization: M = J; + Jp



Spin accumulation

Consider Fermi liquid between two Stoner
mean-field ferromagnets with 6 = «:

/\*//_7\

u EF
down up down down
up

= pile-up of | spins, current suppression

For general angle 0, with polarization
P <1 and spin mixing conductance Y > 1:

1(0) L p2 tan2(0/2)
I1(0) tan2(0/2) +Y ~
Brataas et al., PRL 84, 2481 (2000)

= Giant magnetoresistance effect

What happens for a Luttinger liquid?



Description of contact
(assume identical contacts)
Coupling mechanism 1: Tunneling

Spin conductance Gy | due to spin-dependent
DOS of the FM

= Polarization P = (G4 - G)/G <1
Conductance G = GT + G¢

Tunneling Hamiltonian

H = F'ww + h.c.

with spinors F, W for FM and SWNT at the
contact, and 2 x 2 tunneling matrix

W= >t (1+sm-5)/2
s=t,d=+

Spin conductance Gy | = (2e?/h)|t ||



Assuming Luttinger liguid model, tunneling
into nanotube is power-law suppressed (irrel-
evant under RG) with end-tunneling expo-
nent

n=(g ' -1)/2>0

= tunneling spin current Jp ~ (V/D)"/2
from lead into tube is strongly suppressed

Exact tunneling spin current:
Jp= Y (Pm+sM) I,(V — sM)
=
with M = fR—l— fL fixed by spin current con-
servation and

Z,(V) = (GV/2)(kgT/D)*T"/2sinh(eV/2kgT)

eV 2
x (IF'l1
‘ ( Tt kBT)




Coupling mechanism 2: Exchange

H" = — K - [Ww(0)(¢/2)w(0)]

With spin-charge separation, exchange acts
only in the spin sector

= Exchange current carries no power-law
suppression factor, RG scaling of K not af-
fected by interactions, but stays exactly marginal

= Exchange drastically enhanced over
tunneling due to spin-charge separation

Exchange physics: Precession of incoming
(left-moving) spin current around m

—




Without tunneling:
Jr(0") = R(¢)JL(0T)

SO(3) rotation matrix R(o)
exchange angle ¢ = K/vp and axis m
= interacting analog of phase shift

With tunneling: Exact treatment of exchange
implies boundary condition

jR=RjL+jT

With M = JR—l— JL the injected spin current
J = Jp — Jp, at given contact is (¢ < 1)

J = ¢M x m~+ Jp

Charge and spin current conservation:
General description of arbitrary circuit of
ferromagnets and SWNTSs



Spin accumulation for SWN'T

Current through FM-SWNT-FM device:

1(0) > tan2(0/2)
I1(0) tan2(6/2) +Y
1(0) = (GV/2)(V/D)"?
Y = 1+4 const.(V/D)™"
1-P*r — - n=0 ) =1
O 1
O 7w/2 T




Destruction of spin accumulation
due to spin-charge separation!

Exchange torques during multiple reflections
scramble injected spins

= possible observation of spin-charge sepa-
ration in transport experiment

But: apparently difficult experiment
= simpler variants are possible ...



Spin transport in magnetic field

External magnetic field B causes precession
of M,J = simpler experimental checks of
spin-charge separation for fixed antiparallel
FM magnetizations 6 = «

Precession phase from left to right end:

Y = EZeeman/(h’UF/L) — .UBBL/h’UF

Two possibilities:
1. Fixed field strength

Take vy = = current as function of angle 3
between B and m:

@—1_p2 1

1(0) 1+ Ytan2g
= spin accumulation destroyed for any 8 = 0




2. Fixed field orientation
Take B L m and change precession phase ~

Sharp negative magnetoresistance peaks at
v = 27n with vanishing width Ay oc T

I 1
() —1_ p2

1(0) 1+ F(v)

oy 14 ¢?cos™2(y/2)
¢2 + cot?(/2)

F(vy) x (V/D)



Magnetic-field dependence of current:

Period A~ between dips in the current yields
contacted tube length



Dangerous backscattering

Backscattering interaction is correction to
Luttinger liquid:
Hb — —b’UF/dij . fR

Estimate for SWNT: b~ (e2/vp)(a/R) ~ 0.1
= causes only exponentially small gap 1y

But: important effect in spin transport!

Bulk precession of magnetization around con-
served spin current = hydrodynamic 7' =0
description yields ballistic steady state
“Landau-Lifshitz” equation

= total precession phase Ay = bJL /v when
going from left to right contact!
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Spin current appears in the precession phase
Ap =bJL/vp = Charge current

1(b,0)/I(0) =1— P?X
obeys nonlinear self-consistency equation:

Y X

T (Y - )X COS2(A<p/2)

sin2(0/2) =

[27/PI(0)]? = (1 - X)[1 + (Y — 1)X]

Since Y > 1, only solutions for
Ap=2n+1)r -0

Winding number n = 0,1,2,... counts full
precession cycles of magnetization

= Current-voltage relation follows in closed
form!



Non-sinusoidal oscillations

Because of backscattering, I —V characteris-
tics shows sawtooth-like oscillations, where
each oscillation period reflects a complete

precession cycle:

1 ............................. 0—0
— fO=mr
=
= LP2f

1-P°

Oscillation period 2V with

_ hvp e?/h 1
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Spin Diffusion

Backscattering scatters spin = conserved charge
current, but spin current relaxed

L1
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Fermi's golden rule: Mean free path for spin
diffusion

1 hvp 500K
L= — ~ 1lu
b2kpT T

Spin transport diffusive for L > ¢



Conclusions Lecture 2

Charge transport for correlated 1D elec-
tron liquid in SWNT with impurity

Coupling to voltage reservoirs via radia-
tive boundary conditions = exact solu-
tion of full transport problem

Singular backscattering by Friedel oscil-
lation

Observation of spin-charge separation pos-
sible via spin transport

Non-sinusoidal oscillatory current-voltage
relation due to backscattering in spin trans-
port setup



