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Overview

T hree lectures:

. Effective field theory and phase diagram
of SWNTs

. Charge and spin transport in SWNTs

. More complexity: Crossed tubes and in-
trinsic Coulomb blockade in MWNTSs



Classification

e Multi-wall nanotubes (MWNTS)
= several (typically ten) concentrically
arranged graphite sheets (““Russian doll""),
typical dimensions:
L~pmtomm, R~5 nm
Schénenberger et al., Appl. Phys. A 69, 283 (1999)

e Ropes of single-wall nanotubes (SWNTSs),
triangular lattice of 5-100 SWNTs
Bockrath et al., Nature 397, 598 (1999)

e Individual SWNT, typical dimensions:
L~1lum, R~1 nm
Yao et al., Nature 402, 273 (1999)



AFM image of SWNT (L ~ 3um, R~ 1.4 nm):
Tans et al., Nature 386, 474 (1997)

S0mm.

Fermi (doping) level tunable, e.g. using gate
voltage

= Transport experiments for individual
nanotubes

= What has theory to say about this?



2D graphite sheet

Basis contains two atoms (a = v/3d,d = 1.42A)

zigzag




First Brillouin zone = Hexagon

Note: exactly two independent corner points
K,K'

Band structure from simple nearest-
neighbor tight binding approach



e Valence band and conduction band touch
only at isolated corner points with £ =20

e For each C one 7w electron = Er =0
= no closed Fermi surface, only isolated
Fermi points

e Close to K points, relativistic dispersion
(light cone)

—

E(@) =vplqdl, §=k-K



Nanotube
= rolled graphite sheet

(n,m) nanotube for superlattice vector

T = nai1 + mao

Transverse component of wavevector is
quantized:

T - k/27 = integer

Nanotube metallic only if Fermivector obeys
this condition = holds for

(2n + m)/3 = integer

experimentally verified!

otherwise insulator with band gap ~ 1 eV

Helicity = electronic properties



Metallic SWNT: Dispersion relation

A E(K)

Basis of graphite sheet contains 2 atoms
= two sublattices p=+ < R/L

= two degenerate Bloch waves ¢pa(z,y)
at each Fermi point a = +



SWNT = 1D ballistic quantum wire

Tans et al., Nature 386, 474 (1997)

e Transverse momentum quantization
(ky = 0) = 1D quantum wire with only 2
bands intersecting the Fermi energy, all
other bands are > 1leV away and can be
ignored at low energy scales

e Massless 1D Dirac Hamiltonian on energy
scales < 1leV (even at room temperature)

e FFrr 72 0 due to doping or gate electrodes

e Two distinct momenta for backscatter-
ing: kp from Fermi point and gg = |ERp|/vp
from doping



Breakdown of Fermi liquid in 1D

In 1D quasiparticles unstable because of
electron-electron interactions

Reduced phase space

Stable excitations: collective electron-hole
pair modes ( “plasmons’™)

Often leads to Luttinger liquid
Luttinger, J.Math.Phys. 4, 1154 (1963)
Haldane, J.Phys.C 14, 2585 (1981)

Examples: nanotubes, quantum wires, FQH
edge states, long chain molecules

Gaussian field theory = exactly solvable!



Bosonization approach

Collective electron-hole excitations = bosonic
plasmon phase field o(x)

Massless Dirac Hamiltonian =
Harmonic chain problem

Ho ="~ / do (M2(2) + (9rp())?)

Kronig (1935)

Express also Fermion operator via ¢(x):

¢L/L(x) X eXp (:I:z[kF:c + o(x)] + z/x d:c’l_l(;cl))

= transform interacting 1D model into equiv-
alent bosonic model

Electron density operator:

k
p(z) = dpp + 7F cos[2kpz + 2¢]



Coulomb interaction

Within the 1D conductor, interaction poten-
tial U(x — ') is typically externally screened
by gate in a distance d

e? e?

|z — 2| \/(:13—33’)2—|—4d2
= effectively short-ranged for |z — z/| > d

U(x — ') ~

Simple description for long lengthscales:
retain only kK = 0 Fourier component Uy

= interaction strength is just a single dimen-
sionless parameter:

1
— <1
\/1 —I— Uo/ﬂ'UF

9

Bosonization also works for unscreened case,
since only weak logarithmic divergence

= multiplicative logarithmic corrections to
Luttinger power laws



Luttinger liquid

Coulomb interaction is density-density inter-
action

= keeping only “slow’” component p ~ Ozp
corresponding to forward scattering gives

Luttinger liquid Hamiltonian

(3
H="2 [ (M) + (1/67) @re(@))?)
= exactly solvable Gaussian field theory
“Fast” component corresponds to electron-

electron backscattering = ignored in Lut-
tinger model, but often irrelevant



Luttinger liquid properties

Electron distribution function:
smeared Fermi surface (T = 0)

ng X |k—kF|a for k— kp

a=(g+1/g—2)/4




e Tunneling conductance into Luttinger
liquid power-law suppressed G o T/2
with geometry-dependent exponents

Nend = (1/9 —1)/2 > 2npuik

e Electron fractionalizes into spinons and
holons (solitons of Gaussian theory)



Spin charge separation

$in electron

"

| ————————————————————————
1D wire

Additional electron decays into spin and
charge wave packets

Both wave packets decouple and propa-
gate with different velocities:

Uspin 7= Ucharge

Spatial separation of electronic spin and
charge degrees of freedom

So far no unambiguous experimental ob-
servation!



Low-energy theory for metallic
SWNT

Low-energy expansion of electron operator
using Bloch waves

1 -
T,y) = exp(—iaKr
Qspa( y) \/ﬁ ( )

sublattice p = 4+ and Fermi point a = +

e Quantized transverse momentum implies
orbital contribution ~ exp(imy/R)

e All m # O states cost energy > hvgp/R =
1 eV = keep only m =20

e Then: two spindegenerate copies of 1D
massless Dirac Hamiltonian

e Perfectly contacted SWNT has conduc-
tance 4e2/h



Resulting expansion for electron operator

Vo(z,y) = Z ¢pa(33a Y) ¢pao($)
pQ

= 1D Fermions ¥pac(x) for spin o = £
Central question:

Does long-ranged Coulomb interaction result
in Luttinger liquid or more exotic non-Fermi
liquid? (assume individual tube on insu-
lating substrate)
Egger & Gogolin, PRL 79, 5082 (1997)
EPJB 3, 281 (1998)
Kane, Balents & Fisher, PRL 79, 5086 (1997)



Coulomb interaction

On the tube surface, Coulomb interaction
potential U(F—7") is

e? /K
V@ — )2 + 4R2sin?((y — /) /2R] + a2

with dielectric constant k and a, ~ a

Second-quantized interaction Hamiltonian

H = %Z/df’/df’wf,(ﬂwi,(f‘ "

x U@FE—7"YW_ (7 )V,(7)

Now insert expansion for W
= messy 1D model



1D Coulomb interaction

Momentum conservation = only allowed
interaction processes off half-filling:

e Forward scattering

Small momentum exchange, couples “slow’
1D densities. Physically due to long-range
part of interaction.

e Backscattering

Large momentum exchange, couples “fast”
1D densities. Physically due to short-
range interactions.

Backscattering couplings scale ~ 1/R
= could be very large in ultrathin SWNTSs,
but small in “normal” SWNTSs.



Backscattering couplings

e Momentum exchange 2qp

Coupling constant f/a ~ 0.05e2/R

e Momentum exchange 2kp

Coupling constant b/a ~ 0.1e2/R



Bosonization

4 bosonic phase fields pq(x) with
a=ct+,c—,s+,s—, and Ny = —0,04

c/s: Charge/spin degrees of freedom
+: Symmetric/antisymmetric combinations
of Fermi points

Bosonized Hamiltonian
— Luttinger liquid plus nonlinearities

H = %F / dz [n§+g;2(8msoa)2}

+ f / dx[— COS . COS s — COS . COS Pyt
+ COS ps— COS 1]

+ b/d:v COS p.—[COS ps— + CcOSOs_]

Electron-electron interaction and tube radius
determine couplings f,b, gq

ga =1 except g.4 =g



Luttinger parameter

Estimate for unscreened interactions shows
log divergence
= natural cutoff is tube length L:

Se2 —1/2
g = (1—|— In[L/27rR])
TRV
2E. —1/2
- (1+%)

with charging energy E. and level spacing A

Estimate depends only weakly on L, R
= for typical parameters

g~ 0.2to 0.3

= very strong correlations



Nonlinearities?

e Total charge (a = c+) channel decouples
= perturbative renormalization group anal-
ySis can be applied

e b is marginally relevant = destroys Lut-
tinger liquid behavior for E — 0O

e f is first marginally irrelevant, but be-
comes relevant around new fixed point

Analytical solution via
Majorana refermionization

= complete characterization of non-Fermi
liquid state in SWNTSs



Majorana refermionization

f marginally irrelevant, but b relevant
= start with f =0

e Nonlinearity acts only in (¢—,s—) sector

e Define new ‘“effective” 1D Fermions for

a= (c—,s—)

Vo r/L(@) ~ expl—(i/2) (£0a(x) 4 pa(@))]

e Express (complex) Dirac Fermions in terms
of (real) Majorana Fermions

b rr = [€1,r/L(®) + il g/ (2)]/V2
Yoo r/r = [€3.r/L(x) + &4 g/ (®)]/V2



Resulting Majorana Hamiltonian for (¢—,s—)
sector:

.4
H = ;F Z/dw(ﬁjRaxﬁjR—ijawij)
=1

+ 2b / dr(§3r€31 + §aréar)é1RE1L

= &> stays massless, but &1 3 4 become
massive (gapped)

Majorana mean field theory yields energy gap
for £1 3 4 with bandwidth D

kT, = D exp[—mvp/v/2b]

= (c—) channel massive, but (s—)7

Bosonized version: Uncertainty relation pre-
vents pinning of pg_ or O5_—



Effective Hamiltonian for (s—) channel:
Hs— = Hjp[&1] + Ho[&2]

—’i’UF

H;[¢;] /dx(ﬁjRaxﬁjR — &;1,028;1)

- imj/dw §iRE5L

with m1 = mp and mo = 0

= Mapping to two classical 2D Ising models
I1 2, with Iy disordered (T > T¢) and Iy criti-
cal (T =1T¢)

= take exact solution for 2D Ising

f #= 0 can also be treated via Majorana
refermionization, opens gap

Tr = (f/0)Ty < Ty

in spin channels (s+4,s—)



T hree temperature regimes

1. High-temperature regime: all fields are

massless
Luttinger liquid
(even at room temperature)

2. Intermediate temperatures (Ty < T < Tp)
= (c—) massive, (s—) in universality class
of classical 2D Ising model

3. T < Tf = all fields gapped except ¢+

Estimate for R=1.4 nm
Ty <T,=0.1 mK
= in practice Luttinger liquid

But: Low-temperature phases important
for ultrathin tubes!



Phase diagram
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no real order, but slow algebraic power law
decay!



1D Superconductivity

Existence of strong intrinsic superconducting
fluctuations in ultrathin SWNTs (R = 2 A)
experimentally detected

Tang et al., Science 292, 2462 (2001)

Proposed mechanism: Cooper pair formation
IS triggered by repulsive interactions,
analogous to d-wave superconductivity
in two-leg Hubbard ladders
Egger & Gogolin, PRL 79, 5082 (1997)
Gonzalez, PRL 87, 136401 (2001)



Tunneling DOS

Tunneling density of states:

y(2, E) ~ /O " dt B (e, vl (a, 0))

Electron is not a good excitation
= decomposes into plasmon modes
= orthogonality catastrophe,

with power-law scaling

(W(x, t)yT(x,0)) ~ =177

Power-law suppression of TDOS:

v(z,E) ~ E"



Exponent n depends on geometry. Consider
semi-infinite SWNT: >0

e Bulk exponent for z > vp/|E|:

_(1/g)+g-—-2
Tbulk — 4

e End exponent for z K< vp/|E|:
_(1/g) -1

Nend = > > 2Npulk

e Experimentally verified in SWNTSs
Bockrath et al., Nature 397, 598 (1999)
Yao et al., Nature 402, 273 (1999)
Postma et al., Science 293, 76 (2001)



Conclusions Lecture 1

e SWNT are ballistic 1D quantum wires
with strong interactions

e Phase diagram: superconductivity, charge
density wave character at low tempera-
tures, Luttinger liquid at higher temper-
atures

e Sophisticated field theory methods can
be applied to description of a single molecule



