Topography and magnetic properties of epitaxial Fe/Cu/Si(111) nanostructures

P. Castrucci, S. Fusari, R. Gunnella, P. Falcioni,
M. De Crescenzi

Unità INFM, Universita' di Camerino (Italy)

In collaboration with:

G. Gubbiotti,G. Carlotti (INFM,Università di Perugia)

M. Sacchi (LURE, France)

Magnetic films and multilayers:

- giant magnetoresistence
- magnetic memories
- microwave devices

Systems characterized by the change of

- value of magnetic moment
- magnetization axis
 - vs thickness
 - choosing appropriate
 combination of materials

magnetic systems on Si substrate?

- Silicon is cheaper and easier to prepare than any metallic single crystal substrate
- In view of their potential integration with Si technology

Si does not provide a close lattice match to any of the elemental magnetic metals

It is not easy to achieve epitaxial growth

Serious limitations of the device performances

Buffer layer!

Methodology and experimental techniques

- ➤ Growth in UHV system: p~1x10⁻¹⁰ torr
- Cu and Fe deposited on the sample kept at RT

LEED:

- to check the quality of the Si substrate reconstruction
- to monitor morphology and structural changes after the buffer layer formation and each Fe deposition

Auger spectroscopy:

to check the atomic purity of substrates & overlayers

STM and MFM

SMOKE & Resonant magnetic scatterng

Auger electron diffraction

3 nm Cu RT deposited on Si(111)7x7 surface

Si(111)7x7

Cu/Si(111)7x7

LEED images for $E_p = 70 \text{ eV}$

0.4 nm Fe RT deposited on Cu/Si(111) Cu/Si(111)7x7

Fe/Cu/Si(111)7x7

LEED images for $E_p = 70 \text{ eV}$

Out of plane magnetization

0.8 nm Fe RT deposited on Cu/Si(111)

LEED images

Out of plane magnetization

1.2 nm Fe RT deposited on Cu/Si(111)

LEED images still suggest
the presence of
bcc (110) structures in the
Kurdjomov-Sachs orientation

in-plane and out-of-plane magnetization

3.0 nm Fe RT deposited on Cu/Si(111)

In the LEED image the satellite spots, typical of the KS orientation, are still present

BUT

appreaciably broadened

Increasing of rotationally related disorder

In-plane magnetization

8.0 nm Fe RT deposited on Cu/Si(111)

STM image:

Nanostructures average size: 5-6 nm

In-plane magnetization

RT SMOKE measurements:

- Longitudinal loops for d_{Fe} > 0.8 nm
- > No polar loops

The coercive field increases with d_{Fe}

SMOKE measurements vs

- Longitudinal SMOKE loops recorded at any temperature up to RT, for d_{Fe} > 0.8 nm
- Polar loops recorded only for T ≤ 50 K and for d_{Fe} ≤ 0.8 nm

Iron high coverage range

MFM: the average size of the in-plane domains grows with d_{Fe} decreasing of H_c

While

SMOKE: - longitudinal magnetization

- H_c increases with d_{Fe}

BUT

LEED: increasing of the structural disorder

The domains walls can remain intrapped, due to the structural disorder, during their expansion when a magnetic field is applied

Out-of-plane \rightarrow in-plane M transition occurs for d_{Fe} slightly above the fcc \rightarrow bcc (LEED)

Nevertheless

- Polar SMOKE loops only for T ≤ 50K
 - Longitudinal SMOKE loops at any T

Completely separate behaviours of magnetization:

Iron very low coverage range $(d_{Fe} \le 0.6 \text{ nm})$

MFM: - out-of- plane magnetic domains
-their average size grows with d_{Fe}
decreasing of the H_c value

- SMOKE: H_c decreases with d_{Fe}
 - polar magnetization remanence at T ≤ 50K
 - polar magnetization saturation up to $T \approx 200K$

Superparamagnetism?

I FFD . fcc iron structural phase

AED polar patterns :

- presence of bcc structural phase even for 1 ML Fe equivalent coverage
- bi-tri layers fcc arranged platelets and/or intermixing processes cannot be completely excluded
- assessment at 2.5-3 ML the nominal thickness at which most of Fe prefer to arrange in a bcc structural phase

Resonant magnetic scattering of polarized x-rays at Fe $L_{2,3}$ edges

RT in-plane local magnetic moment even for 1ML iron

NOT observed both by SMOKE and MFM

- ·SMOKE lack of sensitivity
- MFM lack of resolution to probe such in-plane domains walls

Low iron coverage (0.8nm $\leq d_{Fe} \leq 1.2$ nm)

Independently from the fcc → bcc structural transition detected by LEED

MFM: - for d_{Fe}=1.2nm in-plane & out-of-plane magnetic domains

- the average size of the out-of-plane domains is now decreased in-plane M

SMOKE: -for d_{Fe}=0.8nm polar (at LT) & longitudinal (up to RT) magnetizations

Conclusions:

- Both the fcc and bcc arranged nanostructures have been probed even at 1 ML iron coverage
- The fcc → bcc transition detected by LEED can be related to the size and number of the bcc nanostructures with respect to the fcc ones
- The bcc nanostructures are in-plane magnetized and characterized by a T_c well above RT
- The fcc nanostructures present an out-of-plane magnetization and there are hints to suggest superparamagnetic behaviour