Investigations on the potential use of silicon substrate as support for magnetic iron nanostructured films

P. Castrucci

Sezione INFM-Università di Camerino

This work has been partially supplied by the SIMBRIS-PRA and the MAGDOT-PAIS by INFM

- M. De Crescenzi, R. Gunnella, R. Bernardini, S. Fusari, P. Falcioni A. Montecchiari, R. Carboni INFM -Universita' di Camerino
- L. Ferrari, C. Crotti, C. Comiccioli, C. Ottaviani ISM – CNR, VUV beam line (Trieste)

G. Gubbiotti, S. Tacchi, G. Carlotti INFM- Università di Perugia

M. Sacchi LURE- Orsay (France)

Short Outline

- Why magnetic systems?
- Introduction: Why magnetic systems on Si?
 - What about Fe on Si?
 - Looking for a buffer layer...
 - Lecture 1: Can magnetic Fe films be epitaxially grown on a Si substrate by using Cu or β-FeSi₂ buffer layers?
 - Lecture 2: A careful study of the magnetic and structural properties of ultrathin Fe films deposited on Cu/Si(111)

Magnetic films and multilayers:

- giant magnetoresistence
- magnetic memories
- microwave devices

Systems characterized by the change of

- value of magnetic moment
- magnetization axis
 - vs thickness
 - choosing appropriate
 combination of materials

magnetic systems on Si substrate?

- Silicon is cheaper and easier to prepare than any metallic single crystal substrate
- In view of their potential integration with Si technology

BUT

Si does not provide a close lattice match to any of the elemental magnetic metals

It is not easy to achieve epitaxial growth

Serious limitations of the device performances

is a natural candidate to obtain such magnetic systems

Theoretical prediction:

Total energy vs r_{ws}

by V. L.Moruzzi, P. M. Marcus, K. Schwarz, P. Mohn,

- bcc phase (α-Fe)
 - magnetic for all the r_{ws} values
 - the most stable: $r_{WS} = 2.63$ a.u.
- fcc phase (γ-Fe)
 - different stable and metastable phases
 - NM, HS, LS

as a function of $\mathbf{r_{WS}}$

Experimental observation: The iron fcc phase is stable:

- in bulk only for 1184 K < T < 1665 K</p>
- > as small precipitates in a Cu matrix at room temperature
- in ultra thin films epitaxially grown on substrates as Cu(001),Cu(111),Cu₃Au(001), Ni(001), fcc Co(001)

RT deposited Fe on Si substrates

- No LEED patterns
- Formation of intermixed phases (various silicides FeSi, FeSi2, Fe3Si and non- stoichiometric alloys have been suggested to form at the Fe/Si interface)

No good quality epitaxial Fe films

The stoichiometry of Fe-Si alloy affects

- the magnetic behaviour
 ferromagnetic silicides:
 Fe(Fe_xSi_{1-x}) with 0.15 < x < 0.5
- the value of Fe magnetic moment (m)
 m decreases with iron content
- defects presence
 it increases with Si content

Therefore

- > to avoid Fe-Si interdiffusion
- to grow good quality iron epitaxial films

- Deposition of Cu on Si(001) and Si(111)
- o Formation of β-FeSi₂ on Si(001)

Why a copper buffer layer?

Iron films epitaxially grow on Cu(111) and Cu(001) single crystals

Iron ultrathin films

- mostly fcc arranged (but also fct in Cu(001) substrate case)
- showed an out-of-plane magnetization

Superparamagnetic? HS

ferromagnetic & sometimes AF

Iron thin and thick films

- bcc arranged
- ferromagnetic behaviour
- in-plane magnetization

What about Fe/Cu/Si?

- Can we epitaxially grow high quality Fe/Cu/Si ultrathin films?
- Are their magnetic properties similar to those of ultrathin iron films grown on Cu syngle srystals?
- Which are the morphological, structural and electronic properties of these films?
- Does a correlation exist between the magnetic and structural or morphological properties of these films?

Methodology

and experimental techniques

- Growth in UHV system: p~1x10⁻¹⁰ torr
- Fe deposited on the sample kept at RT LEED:
 - to check the quality of the Si substrate reconstruction
 - to monitor morphology and structural changes after the buffer layer formation and each Fe deposition

Auger spectra:

 to check the atomic purity of substrates & overlayers

Auger electron diffraction

XAS e UPS

SMOKE

STM and MFM

Polar angular Auger electron diffraction patterns:

- sample rotation in front of the CMA
- azimuthal plane identified by LEED images
- peak-to-peak intensity of Fe L _{2,3VV} and/or Cu L_{2,3VV}
- Auger spectra
 - collected in first derivative mode
 - measured vs polar angle
- primary electron beam of 1500 eV

Si(111) substrate

LEED images $E_p = 70 \text{ eV}$

Si(111)7x 7

15 ML Cu
on Si(111)7x7

[110]

STM 15 ML Cu/Si(111)

Cu flat nanostructures average size ≈ 30-40 nm

LEED images for Fe/Cu/Si(111)

Ep = 70 eV

Ep = 90 eV

Fe 1ML

Fe 2ML

Fe 3ML

LEED analysis for Fe/Cu/Si(111)

For Fe coverages higher than 3 ML the LEED patterns do not change with the exception of

- the disappearence of the p(1x1) spots since the electrons can no more reach the fcc(111) hexagonal net
- ➤ a broadening (for thicker and thicker films) of the satellite spots since the growth of rotationally related bcc Fe(110) domains introduces structural disorder in the film

RT Longitudinal SMOKE on Cu/Fe/Cu/Si(111)

No RT Polar SMOKE loops have been measured

- Two ranges of Fe thickness (lower and higher than 10 Å) can be identified
- The linear behaviour of the saturation magnetization above 10 Å (≈5 ML), i.e. slightly above the fcc→bcc structural transition detected by LEED, can be interpreted as a constant value of the magnetic moment per atom in that Fe thickness range.

Resonant magnetic scattering of polarized x-rays

- Reflectivity curves at the Fe 2p edge vs both photon energy and angle for the two orientation of the magnetic field are recorded
- Data are analysed by using the computer code ONDA which describes the scattering process from stratified media using the dynamical theory, directly solving the Maxwell's equations for a dielectric tensor constructed from the experimental absorption curves.

The dielectric tensor contains explicit information on electronic and magnetic properties of the system.

A large set of experimental data can be analysed to obtain information on the local magnetic moment per atom.

Resonant magnetic scattering at the 2p edge for Cu/Fe_x/Cu/Si(111)

x = 20 Å

Asymmetry ratio: difference between the two curves for opposite magnetization divided by their sum

RT, in-plane H field

Comparison between experimental and calculated curves vs photon energy and for several scattering angles

- the non resonant optical constants of Cu and Si are taken from tabulated curves
- for Fe a previous experimental determination has been used

 $m = 2.2 \mu_B / atom$

In summary:

- Cu epitaxial buffer layer can be grown on Si(111)7x7 reconstructed substrate
- Epitaxial Fe films can be successfully deposited on Cu/Si(111)
- For Fe thickness higher than 6 Å
 - fcc->bcc structural transition
 - in-plane magnetization
- For Fe thickness higher than 10 Å $m = 2.2 \,\mu_B$ /atom

In the Cu/Si(001) case:

- no LEED patterns have been found
- X-ray Photoelectron Diffraction measurements suggested that Cu epitaxy does not occur on Si(001) even at the early stage of the interface formation (*J. Vac. Sci. Technol. B10* (1992) 2082).

The Fe/\beta-FeSi_2 /Si(001) growth:

- After the Si(001)2x1 reconstruction
- > 20 Å of iron have been deposited at RT
- > 500°C annealing for 5'

 β -FeSi₂/Si(001)

Then different Fe amounts have been deposited at RT

LEED analysis

 $E_p = 65 \, eV$

Si(001)-2x1 double domain reconstruction

A

 β -FeSi₂/Si(001)

grown as two epitaxial domains on the silicon surface:

- •β-FeSi₂[010] //Si[110]
- β-FeSi₂[010]//Si[100]

В

20 Å Fe/FeSi₂/Si(001)

the image points out the presence of three Fe domains rotated one each other.

C

A similar pattern is observed also for Fe thicker films, though with a more diffuse background

SMOKE 50 Å Cu/Fe/FeSi2/Si(001)

In-plane magnetization:

- > [100] and [010] easy magnetization axes
- > [110] hard magnetization axis

BLS spectra vs in-plane H field intensity

The increasing of the H field intensity raises the absolute value of surface magnon frequency in the anti-Stokes branch

in-plane magnetization vector

Magnon frequency vs H field intensity

Experimental data () result to be in a good accordance with a linear dependence (solid line) that intercepts the frequency axis.

- > The linearity of the best-fitting curve
 - good epitaxial quality for the Fe film
- The presence of an offset in the best fitting curve

📂 in-plane magnetization

In summary

- High quality epitaxial iron films can be grown on β-FeSi₂/Si(001) substrate
- ➤ Fe films are ferromagnetic at room temperature and present an inplane magnetization with fourfold anisotropy induced by the Si(001) substrate

Conclusions

- Cu/Si(111) and β-FeSi₂/Si(001) have been successfully used to obtain good quality epitaxial magnetic Fe films on silicon substrate
- Thin Fe films are ferromagnetic at room temperature and present an in-plane magnetization