X-ray Absorption studies of atomic environments in semiconductor nanostructures

Federico Boscherini

INFM and Department of Physics University of Bologna, Italy

University of Bologna

- Introduction
 - Why XAS for nanostructures
 - How XAS for nanostructures
- Interdiffusion in quantum dots and islands
- Relation between local and long-range elasticity in an "ideal" alloy: (InGa)As
- Growth of nitride epilayers: a local view

Atomic structure in nanostructures

- As a result of reduced dimensions:
 - atomic intermixing
 - in the "core"
 - at the interfaces
 - variations in bond lengths

0.2777 nm 90° 0.2909 nm

Sn cluster in SiO₂ MDM-INFM

8913

XAS to study nanostructures

- XAS is a local, short range, effect
 - same formalism applies to molecule, cluster or crystalline solid
 - insensitive to variations of morphology
 - sensitive to low thicknesses, high dilutions
- Excellent probe of variations in local environment upon reduction of dimensions and/or dimensionality

Evolution of X-ray Absorption Spectroscopy

- X-ray Absorption Spectroscopy has greatly benefited from
 - third generation SR sources
 - high brilliance, extended energy range, stability, reliability
 - full theoretical understanding and reliable analysis programs

$$\sigma = \frac{\sigma_0}{3 \operatorname{Sin}^2 \delta_{1=1}^0} \sum_m \operatorname{Im} \{T(1 - TG)^{-1}\}_{1m, 1m}^{0, 0}$$

• XAS a reliable tool

University of Bologna

GILDA beamline at ESRF Dynamical sagittal focussing over wide energy range

• 13-element HP-Ge detector with digital electronics

University of Bologna

GILDA experimental chamber

- Transmission / fluorescence
- LNT 150 °C
 - reduce thermal damping
- Rotatable holder
 - polarization studies
- Vibrating holder
 - "smooth" Bragg peak effects in single crystal epilayers

Atomic intermixing in Ge/Si and InAs/GaAs quantum dots

Quantum dots

- F. Boscherini, G. Capellini, L. DiGaspare, F. Rosei, N. Motta, and S. Mobilio, Appl. Phys. Lett. 76, 682 (2000)
- Stranski-Krastanov growth leads to narrow size distribution of dots
- Need for understanding of local bonding

Energetics of island formation

- Competing energies:
 - strain
 - surface
 - dislocations

- Contributions from:
 - wetting layer
 - islands

"Coverage"

Preparation of Ge dots

- Ge/Si(001) by CVD at University of Roma Tre, 600 °C
 - Ex-situ AFM used to characterize degree of relaxation
- Ge/Si(111) by MBE at Tor Verg., 450 550 °C
 - In-situ STM/AFM

Ge/Si(001): AFM probes relaxation

- Analysis of aspect ratio provides measurement of relative amount of relaxed islands
- Ge/Si(001): Full range of relaxation examined

University of Bologna

Ge/Si(001): Ge K-edge XAFS

Ge/Si(001): XAFS results

- $N(Ge-Si)=(1-1.5)\pm 0.3$
- Assuming <u>random alloy</u> average composition is $Ge_{0.70}Si_{0.30}$

Ge/Si(111): XAFS

Ge/Si(111): STM

- A trench develops around the islands
 - Si from the substrate diffusing into the island

University of Bologna

InAs/GaAs(001): In K-edge XAFS

- ALMBE, 10 × (3 ML InAs + 15 nm GaAs)
- Interdiffusion evident in 2nd shell signal
 - Contraction of bond length
- In concentration in dots: 0.25 0.45

Intermixing and strain

- $E_s \propto \epsilon^2$
- Alloying will decrease ε linearly with concentration x

 $a_{alloy} = x a_1 + (1 - x) a_0$

• Intermixing must be considered in realistic models of Stranski-Krastanov growth

Local elasticity in strained epilayers

Local strain in 2D semiconductor epilayers

- Romanato et. al., Phys. Rev. B 57, 14619 (1998)
- Tormen et. al., J. Appl. Physics 86, 2533 (1999).
- Tormen et. al., Phys. Rev. B 63, 115326 (2001)
- What is the microscopic mechanism of accommodation of strain?
- What is the relation between long-range and short range description of the elasticity of solids?

Long vs. short -range elasticity

- Long range distortion, probed by diffraction:
 - $-\epsilon_{\perp} = -2 \frac{C_{12}}{C_{11}} \epsilon_{\parallel}$
- Short range distortion, probed by XAFS: $V(\{R_{ij}\}, \{\theta_{ijk}\}) = \frac{\alpha}{2} \sum_{ij} (R_{ij} - R_{ij}^0)^2 + \frac{\beta}{8} R_e^2 \sum_{ijk} (\cos \theta_{ijk} + \frac{1}{3})^2$

Local distortions in unstrained alloys

$$V(\{R_{ij}\}, \{\theta_{ijk}\}) = \frac{\alpha}{2} \sum_{ij} (R_{ij} - R_{ij}^{0})^{2} + \frac{\beta}{8} R_{e}^{2} \sum_{ijk} (\cos \theta_{ijk} + \frac{1}{3})^{2}$$

- Local distortions in unstrained alloys are well understood
- In semiconductors $\beta/\alpha = 0.1 0.2$
 - Bond lengths are "rigid"
- Fundamental behavior can be obtained with
 - no disorder in force constants
 - disorder in atomic radii

Samples used

- High quality In_xGa_{1-x}As/InP(001) layers were used to study this issue
- Samples deposited by MOCVD at ICTIMA-CNR
- Characterized by AFM, HRXRD, RBS, TEM
- Two series:
 - pseudomorphic as a function of strain, with
 - $-1.42 < \epsilon_{\parallel} < 1.98$
 - fixed x=0.25, as a function of thickness, with
 - $1.42 < \epsilon_{\parallel} < 0$

Variation of bond lengths

• A linear variation of bond lengths with strain is clearly detected

Polarization dependence

E

- Interatomic distances parallel and perpendicular to growth plane can be obtained
- In the plane wave approximation each correlation contributes with a weight equal to 3 $Cos^2(\hat{E} \bullet \hat{\mathbf{r}}_{ii})$

PERPENDICULAR

PARALLEL

University of Bologna

Variation of 2nd shell distances

- A strain induced splitting $[\delta r_{PAR}(x) - \delta r_{PER}(x)]$ is detected
- The splitting is equal for all atomic distances

Local Effect of Strain

• The strain tensor is

$$\begin{pmatrix} \varepsilon_{\parallel} & 0 & 0 \\ 0 & \varepsilon_{\parallel} & 0 \\ 0 & 0 & \varepsilon_{\perp} \end{pmatrix} \quad \varepsilon_{\perp} = -\gamma \varepsilon_{\parallel} \quad \gamma = 2 \frac{C_{12}}{C_{11}}$$

 Application of this tensor to 1st and 2nd shell interatomic distances yields

$$\delta r^{(1)}(x) = a(x) \frac{\left[2 - \gamma(x)\right]}{4\sqrt{3}} \varepsilon_{\parallel}$$
$$\delta r^{(2)}_{OUT}(x) = a(x) \frac{\left[\gamma(x) - 1\right]}{2\sqrt{2}} \varepsilon_{\parallel}$$
$$\delta r^{(2)}_{OUT}(x) = a(x) \frac{\varepsilon_{\parallel}}{2\sqrt{2}}$$

Local effect of strain

- The XAFS results can be reproduced by transfering the macroscopic strain tensor to the atomic scale, <u>neglecting the type of bond</u>
- The effect of strain is linearly summed to that of alloying
- **CONCLUSION**: Macroscopic elasticity theory is applicable to the local scale

Growth of GaN epilayers: a local view

Growth of GaN on SiC and AlN

- F. Boscherini, R. Lantier, A. Rizzi, F.
 D'Acapito, and S. Mobilio, Appl. Phys. Lett.
 74, 3309 (1999) and submitted to PRB (2001)
- Nitrides are of great interest for realization of blue-violet optoelectronic devices
- Understanding of basic physics and growth mechanisms still matter of active research
 - No substrate with similar lattice constant readily available

Issues addressed

- Nitrides exhibit
 - spontaneous polarization
 - strain-dependent piezoelectric polarization
- GaN/SiC abrupt is expected to be charged and unstable
 intermixing is expected (Ga/Si or C/N mixed planes)
- Relation between morphology and local strain
- Probe of elastic constants
- Samples grown at ISI, Forschungszentrum Jülich by MBE with rf plasma source $\rm N_2$
- XPS determination of band bending and band offsets

GaN/SiC: Ga XAFS

GaN/SiC

- No change in 2nd shell distances, no asymmetry between parallel and perpendicular directions
 - Relaxed growth (no piezoelectric polarization)
- No extensive intediffusion
 - High quality growth
- No Ga-Si mixed interface plane (C/N mixed plane cannot be excluded)

GaN/SiC: Impact

- These results provide basis for:
 - interpretation of XPS data
 - discussion and input to *ab-initio* electronic structure calculations
- Band-bending observed in XPS compatible with relaxed growth
- Valence band discontinuity of 0.8 ± 0.1 eV must be attributed to relaxed interface
- Note that all *ab-initio* calculations assume pseudomorphic growth

GaN/AlN: dependence of morphology on growth temperature

7 nm 620 ° C

• "Smoother" epilayers for lower growth temperature

GaN/AlN: Polarization dependent Ga XANES

- Fingerprint of wurtzite structure
 - 6 nm layers are hexagonal
- Reproduced by full multiple scattering calculations

GaN/AIN: XAFS probes local elastic properties

- By measuring $R^{(2)}$ in two polarizations we obtain $\varepsilon_{||}$ and ε_{\perp}
- Strain increases for "smoother" epilayers but never reaches -0.024
- Values of $\frac{\varepsilon_{\perp}}{\varepsilon_{\parallel}} = -2\frac{C_{13}}{C_{33}}$ in good agreement with spread of values in literature

Thanks

- Ge islands
 - G. Capellini, S. Mobilio, INFM +Univ. Rome 3
 - N. Motta, F. Rosei, INFM +Univ. Roma 2
- InAs dots
 - M. Capizzi, INFM + Univ. Rome 1
 - P. Frigeri and S. Franchi, MASPEC-CNR
- Local elasticity
 - D. De Salvador, F. Romanato, M. Tormen, A. Drigo, INFM + Univ. Padova
- GaN epilayers
 - A. Rizzi, Jülich and INFM + Univ. Modena
 - F. D'Acapito, INFM Grenoble
 - S. Mobilio, INFN and Univ. Rome 3

Symposium I of the Spring Meeting of the **European Materials Research Society** "Synchrotron Radiation and Materials Science" June 18th - 21st, 2002 Strasbourg, FRANCE abstract deadline January 14th, 2002