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Abstract

By analyzing the point groups of the nonsymmorphic rod-groups of single-

walled carbon nanotubes (CNT's) we show that all achiral CNT's possess only

8 Raman-active and 3 infrared-active phonon modes. This is in contrast to

previously predicted 15-16 and 7-8 active modes, respectively. Similarly, we

�nd that all chiral CNT's have 14 (instead of 15) Raman-active and 6 (in-

stead of 9) infrared-active phonon modes. Lowering the spatial symmetry of

CNT's, by considering single-walled boron-nitride nanotubes (BNT's), leads

to additional active modes. However, unlike the situation for achiral CNT's,

we �nd that zigzag BNT's possess almost twice Raman- and infrared-active

vibrations as armchair BNT's.

I. INTRODUCTION

Since their discovery by Iijima in 1991 [1], CNT's have attracted enormous attention of

both experimentalists and theoreticians for their novel properties and potential applications

(see, e.g., Refs. [2,3] and references therein). CNT's are a synthesized allotropic form of

carbon (see Ref. [4] for review of their physical properties). Single-walled CNT's (hereafter,

CNT's), to which we will restrict our attention, can be viewed as cylinders made of graphite

sheets (graphene). The in�nite order, two-dimensional (2D) translational symmetries of the

hexagonal net can transform into various �nite order symmetries once the graphene plane

is transformed (rolled) into the CNT cylinder. The order and character of the resulting

symmetries depend on the way the graphene boundaries are connected with each other to

form the cylinder.
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In Fig. (1), the classi�cation according to the pair of indices (n;m), representing di�erent

CNT's, is illustrated. The (n;m) CNT is formed by rolling the graphene sheet along the

chiral vector

Ch = na1 +ma2 (1)

(a1 and a2 are the two primitive vectors of the honeycomb lattice), such that its ori-

gin O and its end point O
0 coincide on the CNT. If the graphene sheet is rolled

along the na1 direction then an achiral zigzag CNT, classi�ed by the pair of in-

dices (n; 0), is formed. If the graphene sheet is rolled along the n (a1 + a2) di-

rection then an achiral armchair CNT, classi�ed by the pair of indices (n; n), is

formed. In all other cases, i.e. whenever 0 < m < n, a chiral CNT is formed.
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Figure 1: Classi�cation of CNT's according to the pair of indices (n;m). a1 and

a2 are the two primitive vectors of the honeycomb lattice. The chiral vectors,

Ch = OO0, are shown for zigzag, chiral and armchair CNT's.

The primitive translation vector of the CNT unit cell, Tz, is given by

Tz =
1

dR

[(2m+ n) a1 � (2n+m) a2] ; (2)
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where dR is the greatest common divisor of 2n+m and 2m+n [4]. From the size of the unit

cell, which is de�ned by the orthogonal vectors Tz and Ch, we can readily �nd the number

of hexagons per unit cell,

N =
2 (m2 +mn + n

2)

dR

: (3)

Note that each hexagon contains two carbon atoms.

Boron-nitride nanotubes (BNT's) are recently synthesized (Chopra et al. [5], Yu et al.

[6]) novel type of materials, combining stable insulating properties (Rubio et al. [7], et al.

Blase [8]) and high strength (Chorpa and Zettl [9]). Owing to the subset relation between

the plane-groups of 2D hexagonal boron-nitride and graphite nets

p3m1 � p6mm; (4)

single-walled BNT's (hereafter, BNT's) are characterized by the pair of indices n and m

as CNT's do: (n;m = n)-armchair, (n;m = 0)-zigzag and (n; 0 < m < n)-chiral. Thus,

the (n;m) BNT and CNT possess the same lattice period Tz and number N of hexagons

within their unit cells. Ab-initio studies of the spatial structure of BNT's have predicted

the buckling of B-N bonds, i.e., the formation of concentric inner \B-cylinder" and outer

\N-cylinder" (Blase et al. [8], Menon and Srivastava [10]).

II. ACTIVE PHONONS IN SINGLE-WALLED CARBON NANOTUBES

The classi�cation of CNT symmetries is an essential stage in predicting their physical

properties, among which are active infrared (IR) and Raman vibrations (see Ref. [4] and

references therein). For example, there are 15-16 Raman-active phonon modes predicted

for in�nitely long armchair CNT's [4], with frequencies up to about 1600 cm�1. Of them 7

modes are intense (in the low and high frequency zones), while the rest (in the intermediate

frequency zone) have no intensity for in�nite nanotubes (Saito et al. [11]), but do have some

intensity for �nite nanotubes (Saito et al. [12]). Such predictions have clear �ngerprints in

Raman scattering experiments from CNT ropes (Rao et al. [13], Journet et al. [14]).

Until very recently [15], the determination of optically-active phonon modes in achiral

CNT's has been performed with symmorphic rod-groups (Dresselhaus and co-workers; see

Ref. [4] and references therein). In order to account for the inversion symmetry operation,

unit cells possessing the point-groups Dnh or Dnd for even or odd n's, respectively, were

chosen for the (n; 0)-zigzag and (n; n)-armchair CNT's. However, achiral CNT's possess in

addition a screw-axis of order 2n and n glide planes (Damnjanovi�c et al. [16]). Due to these

operations the symmetry of achiral CNT's is described by non-symmorphic rod-groups, as

elucidated recently by Damnjanovi�c et al. [16]. We report here the result of our recent

study [15], showing that this has a dramatic e�ect on vibrational spectra in achiral CNT's.

Especially, we show that armchair CNT's possess only 8 Raman-active vibrations, which

corroborates the recent experimental data [13,14].
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A. Achiral carbon nanotubes

Consider the achiral CNT's possessing the rotation axis of order n, that is the (n; 0)-

zigzag or (n; n)-armchair CNT's.
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Figure 2: 2D projection of various symmetries in achiral CNT's (armchair seg-

ment - top; zigzag segment - bottom): Tz is the primitive translation; S2n is

the screw axis with non-primitive translation and rotation, denoted by Tz=2 and

Cn=2, respectively; g is a glide plane; Dnhjz=0 and Dndjz=Tz

4

stand for the cor-

responding point-group operations, among which �h, �v and Cn are denoted.

Note the Tz=4 shift between Dnhjz=0 and Dndjz=Tz

4

, that coexist in all achiral

CNT's.

The non-symmorphic rod-group [16] describing the achiral CNT's with index n can be
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decomposed in the following manner (the 13-th family of rod-groups [17]),

G[n] = LTz �Dnh � [E� S2n] = LTz �Dnd � [E� S2n] =

LTz �

h
Dnhjz=0 �

�
Dndjz=Tz

4

	 Cnv

�
� Cnv � S2n

i
; (5)

where the reference point z = 0 denotes the crossing of horizontal, �h, and vertical, �v,

re
ection planes (see Fig. (2)). LTz is the 1D translation group with the primitive translation

Tz = jTzj. E is the identity operation. The screw axis S2n =
�
z ! z + Tz

2
; '! '+ �

n

�
involves the lattice smallest non-primitive translation and rotation. The subtraction of the

point group Cnv in Eq. (5) re
ects the set relation Dnhjz=0 \ Dndjz=Tz

4

= Cnv valid for all

n's. The glide plane g is also presented in Fig. (2). It ful�lls the multiplication relation

g = S2n�v. The existence of n distinct glide planes in G[n] stems from the last term in

Eq. (5).

The point-group of the rod-group, G0[n], is obtained by setting all translations (including

the non-primitive ones) in G[n] equal to zero. From Eq. (5) we obtain,

G0[n] = Dnh�[E� C2n] = Dnd�[E� C2n] = D2nh; (6)

where C2n=
�
'! '+ �

n

�
is the rotation embedded in S2n.

Aiming at characterizing the symmetries of phonons at the �(k=0)-point, we would like

to discuss the irreducible representations (irrep's) of G[n] at �. As known from the theory

of space-groups [18], these irrep's are in a one-to-one correspondence with the irrep's of the

factor-group of the wave vector k = 0, which is isomorphic to G0[n] = D2nh. Recall that the

character table of D2nh possesses 2n+ 6 irrep's [19],

�D2nh
= A1g � A2g �B1g �B2g � A1u � A2u � B1u �B2u � Æ

Xn�1

j=1
fEjg � Ejug : (7)

Next, we would like to determine the symmetries of the 6N phonon modes at the �-point and

how many modes are Raman- or IR-active. Recall that for achiral CNT's N = 2n. At this

point we have to di�erentiate between (n; 0)-zigzag and (n; n)-armchair CNT's, due to the

di�erences in atom-arrangements inside their unit cells. The 6N phonon modes transform

according to the following irrep's for zigzag CNT's:

�zig;n2evens
6N = �zig

a 
 �v = 2A1g � A2g � 2B1g � B2g � A1u �

� 2A2u �B1u � 2B2u � Æ

Xn�1

j=1
f3Ejg � 3Ejug

�zig;n2odds
6N = �zig

a 
 �v = 2A1g � A2g � B1g � 2B2g � A1u �

� 2A2u � 2B1u �B2u � Æ

Xn�1

j=1
f3Ejg � 3Ejug ; (8)

where,

�zig;n2evens
a = A1g �B1g � A2u � B2u � Æ

Xn�1

j=1
fEjg � Ejug

�zig;n2odds
a = A1g �B2g � A2u � B1u � Æ

Xn�1

j=1
fEjg � Ejug ; (9)

5



stand for the reducible representations of the carbon-atom positions inside the unit cells.

�v = A2u � E1u is the vector representation. Similarly, the 6N phonon modes for armchair

CNT's transform according to the following irrep's:

�arm;n2evens
6N = �arm

a 
 �v = 2A1g � 2A2g � 2B1g � 2B2g � A1u � A2u � B1u � B2u �

� 2E1g � 4E2g � 2E3g � 4E4g � : : :�

�
3 + (�1)n�1

�
E(n�1)g �

� 4E1u � 2E2u � 4E3u � 2E4u � : : :�

�
3� (�1)n�1

�
E(n�1)u

�arm;n2odd
6N = �arm

a 
 �v = 2A1g � 2A2g �B1g �B2g � A1u � A2u � 2B1u � 2B2u �

� 2E1g � 4E2g � 2E3g � 4E4g � : : :�

�
3 + (�1)n�1

�
E(n�1)g �

� 4E1u � 2E2u � 4E3u � 2E4u � : : :�

�
3� (�1)n�1

�
E(n�1)u; (10)

where,

�arm;n2even
a = A1g � A2g � B1g �B2g � 2 Æ

Xn�1

j=2l
Ejg � 2 Æ

Xn�1

j=2l�1
Eju

�arm;n2odd
a = A1g � A2g � B1u �B2u � 2 Æ

Xn�1

j=2l
Ejg � 2 Æ

Xn�1

j=2l�1
Eju; (11)

stand for the reducible representations of the carbon-atom positions inside the unit cells.

Of these modes, the ones that transform according to �t = A1g � E1g � E2g (the tensor

representation) or �v are Raman- or IR-active, respectively. Out of the 6N phonon modes,

four (which transform as �v and �Rz = A2g) have vanishing frequencies [4,20]. Consequently,

the symmetries and numbers of optically-active phonon modes in zigzag CNT's (with either

odd or even index n) are given by:

�zig
Raman = 2A1g � 3E1g � 3E2g =) n

zig
Raman = 8 ; (12)

�
zig
IR = A2u � 2E1u =) n

zig
IR = 3 ; (13)

and in armchair CNT's (with either odd or even index n):

�arm
Raman = 2A1g � 2E1g � 4E2g =) n

arm
Raman = 8 ; (14)

�arm
IR = 3E1u =) n

arm
IR = 3: (15)

Thus, the numbers of Raman- and IR-active phonon modes are �xed for all zigzag and

armchair CNT's, as previously predicted by Dresselhaus and co-workers using the subgroup

point-groups Dnh;Dnd � D2nh (see Ref. [4] and references therein). However, due to the

higher rod-group and factor-group symmetries there are much fewer active modes: 8 (Ra-

man) and 3 (IR), instead of 15-16 and 7-8, respectively [4]. These �ndings corroborates

the recent experimental data (see Refs. [13,14]) and theoretical predictions of Raman-line

intensities (Refs. [11,12]), where only 7 intense lines were identi�ed for armchair CNT's. For

this, examine the atomic-displacements of the 7 intense Raman-active modes of the (10; 10)-

armchair CNT (see Fig 2 in Ref. [13], or Fig. 10.6 in Ref. [4]). This reveals that they

transform according to �t, not only with respect to the lower-symmetry D10h point-group,

but also with respect to the higher-symmetry D20h factor-group. In other words, these 7 out

of 16 modes (frequencies) are among the 8 modes which we predict to be Raman-active, on

the basis of the higher non-symmorphic rod-group symmetry identi�ed in armchair CNT's!
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B. Chiral carbon nanotubes

Next, we would like to discuss the number of Raman- and IR-active vibrations in chiral

CNT's. Until very recently [15], the determination of optically-active phonon modes in chiral

CNT's has been performed with commutative non-symmorphic rod-groups (Dresselhaus and

co-workers; see Ref. [4] and references therein). The point-group of the rod-group of the

(n;m)-chiral CNT had been shown to be CN , where N is given in Eq. (3). Recently, chiral

CNT's were shown to possess in addition perpendicular C2 axes (Damnjanovi�c et al. [16]).

The existence of these \overlooked" symmetry operations constitute the geometrical proof

that chiral CNT's possess the structure of non-commutative non-symmorphic rod-groups

[16].

The non-symmorphic rod-group describing the (n;m)-chiral CNT can be decomposed as

follows (the 5-th family of rod-groups [17]),

G[N ] = LTz�Dd�

�
Æ

XN

d
�1

j=0
S
j
N

d

�
= LTz�D1�

�
Æ

XN�1

j=0
S
j
N

�
: (16)

d is the greatest common divisor of n and m. SN

d

and SN are screw-axis operations with

the orders of N

d
and N , respectively. The point-group of the rod-group is readily obtained

from Eq. (16),

G0[N ] = Æ

XN

d
�1

j=0
C

j
N

d

�Dd = Æ

XN�1

j=0
C

j
N�D1 = DN : (17)

where CN

d

=
�
'! '+ 2d�

N

�
and CN=

�
'! '+ 2�

N

�
are the rotations embedded in SjN

d

and

SN, respectively. As has been shown recently [15], this higher symmetry (DN � CN) leads

to the reduction of the number of optically-active phonon modes in chiral CNT's.

Analogously to the treatment given above for achiral CNT's, we would like to discuss

the irrep's of the factor-group of the wave vector k = 0, being DN for chiral CNT's. Recall

that the character table of DN possesses N

2
+ 3 (N is always even for CNT's) irrep's [19],

�DN = A1 � A2 �B1 �B2 � Æ

XN

2
�1

j=1
Ej: (18)

The 6N phonon modes transform according to the following irrep's:

�ch
6N=�ch

a 
 �v=3A1�3A2�3B1�3B2� Æ

XN

2
�1

j=1
6Ej; (19)

where

�ch
a = A1 � A2 �B1 � B2 � Æ

XN

2
�1

j=1
2Ej; (20)

stand for the reducible representation of the carbon-atom positions inside the unit cell.

�v = A2�E1 is the vector representation. Of these modes, the ones that transform according

to �t = A1 � E1 � E2 and/or �v are Raman- and/or IR-active, respectively. Four of the

6N phonon-modes, those which transform as �v and �Rz = A2, have vanishing frequencies
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[4,20]. Consequently, the symmetries and numbers of optically-active phonon modes are

given by:

�ch
Raman = 3A1 � 5E1 � 6E2 =) n

ch
Raman = 14 ; (21)

�ch
IR = A2 � 5E1 =) n

ch
IR = 6 : (22)

Thus, the numbers of Raman- and IR-active phonon modes is independent of the chiral

CNT indices, (n;m), as previously predicted by Dresselhaus and co-workers (see Ref. [4]

and references therein) using the subgroup factor-group CN � DN . However, due to the

higher rod-group and factor-group symmetries, fewer modes are active: 14 (Raman) and 6

(IR), instead of 15 and 9, respectively [4].

III. ACTIVE PHONONS IN SINGLE-WALLED BORON-NITRIDE NANOTUBES

In contrast to CNT [4], the classi�cation of BNT spatial symmetries has been completed

only very recently [21,22]. The profound implication of the symmetry properties of BNT's

on physical e�ects can be seen in the recent work of Kr�al et al. [23], who predicted non-

centrosymmetry- and polarity-based photogalvanic e�ects in BNT's. More speci�cally, the

direction of the induced photocurrent was shown to depend on the BNT chirality. How-

ever, all armchair BNT's are centrosymmetric. Nevertheless, and in contrast to 2D and

3D centrosymmetric and polar crystalline materials, they (should) exhibit the azimuthal

photocurrents predicted in Ref. [23]. Here we report the result of our recent study [22],

determining the numbers of Raman- and infrared-active vibrations in BNT's and comparing

them to those in CNT's.

A. Armchair and zigzag boron-nitride nanotubes

Let us consider �rst the achiral BNT's with the rotation axis of order n, that is the

(n; n)-armchair (Fig. (3)) and (n; 0)-zigzag (Fig. (4)) BNT's. Unlike the situation for CNT's,

they do not possess the same symmetry operations [21,22], owing to the lower symmetry

described in Eq. (4). Nevertheless, they still possess symmetries of non-symmorphic rod-

groups because the screw-axis S2n \survives" this symmetry lowering (see Figs. (3) and

(4)). More speci�cally, the (n; n)-armchair BNT possesses horizontal planes (see Fig. (3)).

The lack of C2 axes (recall that there are no C2 axes in p3m1) leads to the absence of

vertical planes in this case. Consequently, the Dnh and Dnd point-groups in armchair CNT's

(see Fig. (2(top)) and Eq. (5)) reduce to Cnh and S2n, respectively (see Fig. (3)). The

converse is true for the (n; 0)-zigzag BNT, which has vertical planes (see Fig. (4)), but

no horizontal ones. Consequently, both Dnh and Dnd point-groups in zigzag CNT's (see

Fig. (2(bottom)) and Eq. (5)) reduce to Cnv (see Fig. (4)). Therefore, the non-symmorphic

rod-group describing the (n; n)-armchair BNT with (either odd or even) index n can be

decomposed in the following manner (the 4-th family of rod-groups [17]),
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G
arm[n] = LTz � Cnh � [E� S2n] = LTz � S2n � [E� S2n] =

LTz �

h
Cnhjz=0 �

�
S2njz=Tz

4

	 Cn

�
� Cn � S2n

i
: (23)

The reference point z = 0 denotes the crossing of horizontal re
ection plane, �h, and the

n-fold rotation axis, Cn (see Fig. (3)). The subtraction of the point group Cn in Eq. (23)

re
ects the set relation Cnhjz=0 \ S2njz=Tz

4

= Cn valid for all n's. Note that while p3m1

does not possess the inversion symmetry, Garm[n] possess this symmetry! In addition, let us

point out that the buckling of B-N bonds [8,10] has no e�ect on the spatial symmetries of

BNT's because the B and N atoms form two concentric cylinders [10] in the BNT's. The

point-group of the rod-group is readily obtained from Eq. (23),

G
arm
0 [n] = Cnh�[E� C2n] = S2n�[E� C2n] = C2nh: (24)

Similarly, the non-symmorphic rod-group describing the (n; 0)-zigzag BNT with (either odd

or even) index n can be decomposed in the following manner (the 8-th family of rod-groups

[17]),

G
zig[n] = LTz�Cnv�[E� S2n] : (25)

Note that the glide planes in zigzag CNT's (see Fig. (2(bottom)) and Eq. (5)) are preserved

in zigzag BNT's (see Fig. (4) and Eq. (25)). The point-group of the rod-group is readily

obtained from Eq. (25),

G
zig
0 [n] = Cnv�[E� C2n] = C2nv: (26)

In order to determine the symmetries (at the �-point) of the 6N phonon modes in

armchair BNT's and how many modes are Raman- or IR-active we have to associate them

with the irrep's of Garm
0 [n] = C2nh. Recall that the character table of C2nh possesses 4n irrep's

[19],

�C2nh = Ag � Bg � Au � Bu � Æ

Xn�1

j=1

n
E
�
jg � E

�
ju

o
: (27)

The 6N phonon modes transform according to the following irrep's:

�arm
6N = �arm

a 
 �v = 4Ag � 2Bg � 2Au � 4Bu �

� 2E�
1g � 4E�

2g � 2E�
3g � : : :�

�
3 + (�1)n�1

�
E
�
(n�1)g �

� 4E�
1u � 2E�

2u � 4E�
3u � : : :�

�
3� (�1)n�1

�
E
�
(n�1)u; (28)

where,

�arm
a = 2

�
Ag � Bu � Æ

Xn�1

j=2l
E
�
jg � Æ

Xn�1

j=2l�1
E
�
ju

�
; (29)

stands for the reducible representations of the B and N atom positions inside the unit cell.

The prefactor of 2 in �arm
a , Eq. (29), re
ects the two equivalent and disjoint sub-lattices

made by the B and N atoms in the BNT's. �v = Au � E
�
1u is the vector representation.

9



�

ϕ
�

��

�
�� 

�
��

�
�

�
]
��

�n ��

�
��

�
]
��

σ
�

Figure 3: 2D projection of various symmetries in armchair BNT's (�, B; Æ, N):

Tz is the primitive translation; S2n is the screw axis with non-primitive transla-

tion and rotation, denoted by Tz=2 and Cn=2, respectively; Cnhjz=0 and S2njz=Tz

4

stand for the corresponding point-group operations, among which �h and Cn

are denoted. Note the Tz=4 shift between Cnhjz=0 and S2njz=Tz

4
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all armchair BNT's.
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Figure 4: 2D projection of various symmetries of zigzag BNT's (�, B; Æ, N): Tz

is the primitive translation; S2n is the screw axis with non-primitive translation

and rotation, denoted by Tz=2 and Cn=2, respectively; g is a glide plane; Cnv
stands for the corresponding point-group operations, among which �v and Cn

are denoted.
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Of these modes, the ones that transform according to �t = Ag � E
�
1g � E

�
2g (the tensor

representation) or �v are Raman- or IR-active, respectively. Out of the 6N phonon modes,

four (which transform as �v and �Rz = Ag) have vanishing frequencies [20]. Consequently,

the symmetries and numbers of optically-active phonon modes in armchair BNT's are given

by:

�arm
Raman = 3Ag � 2E�

1g � 4E�
2g =) n

arm
Raman = 9 ; (30)

�arm
IR = Au � 3E�

1u =) n
arm
IR = 4: (31)

Note that the numbers of Raman- and infrared-active phonon modes found for armchair

BNT's are almost the same as for armchair CNT'S (8 Raman- and 3 IR-active modes; see

Sec. II).

Analogously to the treatment given above for armchair BNT's, we would like to discuss

the irrep's of Gzig
0 [n] = C2nv. Recall that the character table of C2nv possesses n + 3 irrep's

[19],

�C2nv = A1 � A2 � B1 � B2 � Æ

Xn�1

j=1
Ej: (32)

The 6N phonon modes transform according to the following irrep's:

�zig
6N=�zig

a 
 �v=4A1�2A2�4B1�2B2� Æ

Xn�1

j=1
6Ej; (33)

where,

�zig
a = 2

�
A1 � B1 � Æ

Xn�1

j=1
Ej

�
(34)

and �v = A1�E1. Of these modes, the ones that transform according to �t = A1�E1�E2

and/or �v are Raman- and/or IR-active, respectively. Four of the 6N phonon-modes, those

which transform as �v and �Rz = A2, have vanishing frequencies [20]. Consequently, the

symmetries and numbers of optically-active phonon modes in zigzag BNT's are given by:

�
zig
Raman = 3A1 � 5E1 � 6E2 =) n

zig
Raman = 14 ; (35)

�zig
IR = 3A1 � 5E1 =) n

zig
IR = 8 : (36)

Note that the numbers of Raman- and infrared-active phonon modes found for zigzag BNT's

are almost twice as for zigzag CNT's (8 Raman- and 3 IR-active modes; see Sec. II) or

armchair BNT's (see Eqs. (30-31)). In addition, as a result of the lowered symmetry with

respect to and in contrast to the situation for zigzag CNT's, all 8 IR-active modes are

Raman-active as well.
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B. Chiral boron-nitride nanotubes

Finally, let us discuss the (n;m)-chiral BNT. Following the lack of C2 axes in p3m1, the

Dd point-group in the (n;m)-chiral CNT (see Eq. (16)) reduces to Cd in the (n;m)-chiral

BNT. Nevertheless, the (n;m)-chiral BNT still possesses the non-symmorphic rod-group

symmetries, because the screw-axis SN \survives" the above symmetry lowering. Conse-

quently, the non-symmorphic rod-group describing the (n;m)-chiral BNT can be decom-

posed as follows (the �rst family of rod-groups [17]),

G
ch[N ] = LTz�Cd�

�
Æ

XN

d
�1

j=0
S
j
N

d

�
= LTz�

�
Æ

XN�1

j=0
S
j
N

�
: (37)

From Eq. (37) we easily �nd the point-group of the rod-group,

G
ch
0 [N ] = Cd�

�
Æ

XN

d
�1

j=0
C

j
N

d

�
= Æ

XN�1

j=0
C

j
N = CN : (38)

In order to determine the symmetries (at the �-point) of the 6N phonon modes in chiral

BNT's and how many modes are Raman- and/or IR-active we have to associate them with

the irrep's of Gch
0 [N ] = CN . Recall that the character table of CN possesses N irrep's [19],

�CN = A� B � Æ

XN

2
�1

j=1
E
�
j : (39)

The 6N phonon modes transform according to the following irrep's:

�ch
6N=�zig

a 
 �v=6A�6B � Æ

XN

2
�1

j=1
6E�

j ; (40)

where,

�ch
a = 2

�
A�B � Æ

XN

2
�1

j=1
E
�
j

�
= 2�CN (41)

and �v = A�E
�
1 . Of these modes, the ones that transform according to �t = A�E

�
1 �E

�
2

and/or �v are Raman- and/or IR-active, respectively. Four of the 6N phonon-modes, those

which transform as �v and �Rz = A, have vanishing frequencies [20]. Consequently, the

symmetries and numbers of optically-active phonon modes are given by:

�ch
Raman = 4A� 5E�

1 � 6E�
2 =) n

zig
Raman = 15 ; (42)

�ch
IR = 4A� 5E�

1 =) n
zig
IR = 9 : (43)

Note that the numbers of Raman- and infrared-active phonon modes found for chiral BNT's

are almost the same as for chiral CNT's (14 Raman- and 6 IR-active modes; see Sec. (II)).
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IV. SUMMARY AND CONCLUSIONS

By utilizing the higher symmetry factor-group D2nh for the symmetry analysis of phonon

modes in achiral CNT's we �nd that the number of Raman- and IR-active vibrations is

about half from what was previously predicted: 8 (Raman) and 3 (IR), rather then 15-

16 and 7-8, respectively [4]. This result corroborates the recent experimental results (Rao

et al. [13], Journet et al. [14]) and theoretical predictions (Saito et al. [11,12]) of Raman-

line intensities for single-walled armchair CNT's. Our �ndings also allow for the reverse

conclusion that vanishing intensities for those vibrational modes previously predicted to

be active might indicate that the higher non-symmorphic symmetry is (well) realized in

experimental samples of single-walled CNT's. Similarly, by applying the factor-group DN

for the analysis of optically-active vibrations in chiral CNT's we �nd that fewer modes are

active: 14 (Raman) and 6 (IR), instead of 15 and 9, respectively.

By utilizing the symmetries of the factor-groups C2nh, C2nv and CN we have found that:

all armchair BNT's have 9 Raman- and 4 IR-active phonon modes; all zigzag BNT's have 14

Raman- and 8 IR-active phonon modes; all chiral BNT's have 15 Raman- and 9 IR-active

phonon modes. Especially and unlike the situation in achiral CNT's, the number of Raman-

and infrared-active vibrations in zigzag BNT's is almost twice as in armchair BNT's.
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