Harmonic generation-'11 culture stations”

1960- Maiman: LASER

1961- Franken et al.. 2-nd HG by a crystal
1967- New and Ward: 3-rd HG in rares
1987- McPherson et al.: Plateau

1993- Budil et al.: Suppression of HG in elliptically-
polarized fields

1997- Chang et al.: Aoyt = 2.7 nm
1998- Schnirer et al.: Aoyt < 2.5 nm

1999- Constant et al.: Conversion efficiency of
4 x 107>

1999- Andiel et al.: Two-color CC of HHG

2000- Bartels et al.: “Teaching lasers to control
HHG"

2001- Velotta et al.: "HHG in aligned molecules”



Question: Can we control the HHG spec-
trum (HHGS) such that, e.qg.,

n=12xX X 6 X, 2 M ... 1017

The first high—order harmonic is n = 101!

Answer: Yes, using the DS properties of
the Floquet Hamiltonian.

A simpler question: whny atoms emit
only odd harmonics?

n=12X,3 X5 &X.7, ...,2j - 17

ANSWEer: Selection rules (SR's) =
Matrix elements; Symmetry operators



Radiation by an accelerating charge

Larmor formula (classical electrodynamics):

Plass(t) = ir2<t> () = =

Quantum mechanical analog:

d2 2

dt2

2e
Pquan (t) —

s o W D[]0, )

Time-dependent Schrodinger equation:

0 _ [P | ¢
o0 = |2 v e B (e

Frequency domain (harmonic generation):

2

1T o d? _
Tquan($2) oc |~ [ dte ™2 ((r,6) [Fl (r, )

7 is the duration of the laser pulse.




Atoms in monochromatic, LP-light

52
’Hf(r t) = 2— + V(r) + eEgx cos(wt) — zﬁg

[ﬁf,pQ]ZO, P2=(a:—>—x,t—>t—|—§>

chbg,p — eiﬂ-pcbg,p, P — O, 1.

Assume that the atomic—field state is described
by a Floquet state:

The n-th harmonic intensity (matrix element):

ﬁ 2
Ién) x ‘T/ —znwt ¢6,p|37|¢6p>

2
1 .

= )t |7 [ e o o)

‘2

(nw)* | (P plze ™ D p)

1 /T 00
:—/)ﬁ/ dr
T JO — 00

Sambe’s and Howland's extended Hilbert space.



(x1) (-x,1+T/2)



DS analysis:

(®e ple™ D p)) =
= ((Pe,p| <p2—1ﬁ2> ze et (pz_po) | Pep) =
= (Pr®ep| Powe ™ P, H P ) =
— <<Cbe,p|P233€_mth2_1|¢6,p>> 0 —=—
- pzxe_m“’tpgl = ge Wi

re—inwt L (—g)e~inw(+T/2) 2 (—1)PF1lge—inwt —

nis odd

All harmonics are linearly polarized as the in-
cident field is.



Atoms in monochromatic, CP-light

_ 52 3
He(r,t) = §—m+V(r)—|—eEop cos (¢ — wt)_ma

45, P B 5
[, Poo] =0, Poo = (p— @ +bp, t — L+ 41), 5t =
w

pOOCDI',p(SOa t) — e+7;p590cb€,p(r, t)7 pc Z.

Assume that the atomic—field state is described
by a Floquet state:

The n-th harmonic intensity:

Ia(ni) X n4‘<<cb6,p ‘Peiwe_mm‘ Pe.p)
(D)SALC:

‘ 2

{z,y} = {w + iy = peﬂ“’}
DS Analysis:

-~

Pooe:l:zgoe—znwtpo—ol — 6:I:zgoe—znwt —

= e WrFD =1 —

n=1 only

(no high-order harmonics)



SR’s for the HHGS by systems pos-
sessing the N-th order DS Py

The principle

A simple model

_ 52 O
Hf(ra t) = §—m+VN(90)-|-eEop Ccos (¢ — cut)—iﬁa

L _ 2 T
[Hf,PN]ZO, PNZ(QO—)go—I—WW,t—)t-I—N)

Assume that the molecular—field state is de-
scribed by a Floquet state:

The n-th harmonic intensity:

I(”:B x n4‘<<¢6 ‘peﬂ:iwe—inwt‘ ¢6>>‘2

—~

Pyetivemwtpol — oFipo—inwt —iF(FL) _ 4

n=1N+1,2N+1,3N=x1,...

“+"—harmonics are polarized as the incident field,
‘““"—harmonics are polarized in the opposite direction.



7(

Validity in the many-electron case

The Floguet Hamiltonian:

A (T 1) = Z A(ri, )+ Z _ih

r .

PRSI

7

r=(ry,...,r)).

The permutation and DS groups:

M-electron permutation group: Syy;
. 27 T
P =|lo—>p+—,t >t —) :
N, M (so @ + N -I—N
QBE (901)"')90M)'

The n-th harmonic intensity:

) o (o

—

Identical SR’s.

¢6,p,M>> '

2



A simple numerical model

o™, arbitrary units

-19

10

O

(OF&

(sS0CeSe 1

R AT A
SECSHNESS

-24

10

HHGS for a model of N = 100 atoms placed equidis-
tantly on a circle and exposed to monochromatic circularly-
polarized field of the intensity 1.8 x 1013 I and fre-
quency w = 0.02 a.u. (A = 2.22um). The first high-

order harmonic has the frequency of 99w ~ 2 a.u..



10°°
(7))
=
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=
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N~
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I
c
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Stability plot for a cluster with N = 7 atoms of the
probability to generate the symmetry-allowed 6-th har-
monic and the 4-th, 5-th and 7-th (symmetry-forbidden)
harmonics. Note that ¢(® (circles) is more domi-
nant by several orders of magnitude than that of the
symmetry-forbidden harmonics for # < 0.1 rad.; &
(squares) varies initially as 02; ¢(® (diamonds) varies
initially as 6%; and o(") (triangles) varies initially as 6°.

IMYIN £+ (2s+1)] «x 0%I§T (N £+ 1),



10

10

-20

o™, arbitrary units

30

10 10 32 100
N
The probability to get the n-th harmonic as function
of the number N of “atoms” which are placed equidis-
tantly on a circle (a log-log plot). Circles - the 51-st
harmonic (the 50-th for N = 17); squares - the 76-th
harmonic; diamonds - the 101-st harmonic; triangles
- the 151-st harmonic; stars - the 201-st harmonic;
x's - the 301-st harmonic. As N increases the higher

harmonics are amplified.

The results presented above show that the
DS-based SR’s enable one to design a sys-
tem (a target and a time-dependent electric
field) which filters out the selected high-order
harmonics only and even amplifies them.



Note however...

e If one wishes to design a system the low-
est high-order harmonic of which is, say,
the 100-th, it is required to find a molec-
ular (or, an artificial) system which pos-
sesses the 101-fold rotational axis...

The next step:

e Take spatially extended targets, such as
carbon nanotubes (CNT's), in order to
exploit the DS resulting from screw-axis
symmetry.

For very high-order harmonics and/or thick
targets, the dipole approximation is not valid.
—

Formulate expression for the n-th harmonic
intensity beyond the dipole approximation.



HHG by CNT's




(10,0)-zigzag CNT

diameter =
A <
Q
0 T‘>°
9 20,1
a;
C,=l0a e
(0] a
Screw axis:
27 T,
Sog = (go—> + — z—>z—|——>
0 2 50’ 5

Order is 20



‘ 2
<

T )
194

(8,3)-chiral CNT

diameter

Screw axis:
N +71 27 e
PP g T
Order is 194

(

S194



T he n-th harmonic intensity

Classical electrodynamics:

109 o 12|(2 x A™) x g

Anz) o /Oo dt /Oo dr J(r t)e_m(wt_koz),
0 —00 ,

QM current density, J(r.t)

AP o (| AP @) + <<

o | (ana )

)

An z) — —zn(wt koz) (;A(n z)) e—zn(wt koz)
=1 [f) _ SA(r, t)]
m C
(D)SALC:

R R R N N
AP = Ao 1 A0, (A;“’Z)> = (A;n@) +i (Agn@)

A"(n,z) — [zei <a ﬂ:ii> . @eiia(wtkoz)] e—in(wt—koz)
1 Op poyp w

<A(in,Z)>T* — _Eej:igo 0 ﬂ:ii . e_EOej:ia(wt—koz) e—in(wt—koz)
Op poyp w



DS analysis — SR’s

{A<nz> (A<nz>) }p z {Amz) <A<nz>) }3

n=1,23,4,...

{A(nz> (A(nz>) }p— {Amz) (A<nz)> }___>

n=1N+1,2N+1,3N=x1,...

“+"—harmonics are polarized as the incident field,

“-"—harmonics are polarized in the opposite direction.

(10,0)-zigzag — n=1,19,21,39,41...

e.g. A=200nm = 10.5 nm...

(8,3)-chiral - n=1,193,195,387,389...

A=200mm =— =1 NM.




Estimation of the HHG intensities:
A tight-binding-based model

A. Huckel approximation:

Take carbon 2p, orbitals,

a =7
H; ;=4 B i=7%1 (neighbours)
O (otherwise)

B~ 27eV [J. W. G. Wildoer, L. C. Venema,
A. G. Rinzler, R. E. Smalley and C. Dekker,
Nature 391, 59-62 (19938)].

B. Bloch wave-functions:

Periodicity along the z-axis —

bp(2) = %26 (2), #(2) = ¢p(z + Tz)

How to combine them for nanotubes?



Armchair (5,5)

ak(zgt4T,)

ak(z+3T; ‘ : .

ak(z+2T,)

ak(z+T2)

o I '3 FAT AT A L]
e < #< <

ekz-T2)

ak(z-4T;)

<L|J‘Hnanotube‘tp> "



QP& O & P& O

o % e e et 1y

2 3 6 7 10 11 14 15 18 19 V4
1 4 5 8 9 12 13 16 17 20

Constructing the basis functions:
The positions of the carbon atoms in the 0-th
unit cell

(2L 4 pd2n: 5 =1,5,9,13,17 )

I 4228 p =2,6,10,14,18
0 = 4 3

Pp
8T S2m:p=3,7,11,14,19

107r_|_p427f-p_48121620)
Z:1?:1,4-’5,8,9,...,2()
L(0) —

p 3T

T~”:p:2,3’6,7’10,...,19

Yy (po,pr2) = ) e“’”““-@bzpz(po,so Py, 2 —Zp,q>
gq=-—00
g =29 + qTw, p=1,2,...,20(2N), ¢€ Z

Uy
T, T.



The matrix elements of the field-free Hamil-

tonian

O b 0 0O O 0 1\

b 0 1 0 O O O

O 1 0 b O O O

5,5 _ O 0 b 0 1 O O

HéN%(k)__B O O O 1 O O O

O 0 O O O O b
\1 O 0 O O b O)

7859 = 0.249nm, b= b(k) = 2 cos(L:)

<¢2pz (5,5 ¢2pz> —0.

nanotube

C. Dipole approximation:

2T
Ty > —
ko
aaip: = eFgpo oS (wt — )
interaction — ¢0P0 w ¥
(length gauge)
¢k l (eiwtei<p+e—iwte—i<p) ¢k’ — l <eiwtez‘%§0) +e_th€_i‘P§O)) 5o e
Plo P’ 2 k,k'Cp,p'-

—= T he interaction term is diagonal.



Solving the Floquet eigenvalue problem

i

W (t) = e_ﬁatcbs(t)a P(t) = P(t +T),

Hi(t)D:(t) = ed(t), Hs(t) = H(t) — ih%

Approach I.:
Diagonalizing the Floquet Hamiltonian ma-
trix (basis functions):

Spatial:
W (po,9,2), p=1,2,...,202N), —— <k < —,
p T, — T,
Temporal:
1 .
“+lwt -
S ,lez, (1l=-Q,-Q+1,...,0,...,Q0—-1,Q).
T ( Q,—Q Q Q)

Approach 1II.:
Diagonalizing the time-evolution operator for
t =T and propagating in time from O to T

[=—4o00

U(O —t) = Z 6+ilwt [% /OT dt/e_ilwt/e_if;’_zf(t/).t/ﬁ
|—=—

T(0 = TYW.(0) = e~ 75T W, (0)

U0 = )W (0) =W(t), 0<t<T.



0.67

0.00
k, a.u.

0.35
0.00 r

EB’'s and QEB's of the (5,5)-armchair CNT

-0.67

-0.35

K, a.u.




EB’'s and QEB’'s of the (9,0)-zigzag CNT

0.35

0.00

E., au.

£, au.
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EB’'s and QEB’s of the (8,2)-chiral CNT

0.35 T

=

@  0.00

U
-0.35

~0.26

~0.008
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< 0018

S
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HHG from electrons up to Erermi

The FB states:

20(2N)

PE@) = Y CE (B ealk), a=1,2,...,20(2N).
p=1

single-electron contribution:

d) () = (@ (1) [epoeie | k(1))
multi-electron summation:

di(n) = 1% g: /TL dk d'™) (n)
27rNa:1 k:—le )

(5,5)—armchair: n=1,9,11,19,21,...
(9,0)—zigzag: n=1,17,19,35,37,...
(8,2)—chiral: n=1,27,29,...,



Main results

Eq = 0.05 a.u. (=9 x 1013 w/cm?),
w=0.037 a.u. (A= 1.2um).

The intensities:

(5,5)—armchair: |d+(n)|° ~ 1072 — 10" "a.u.x
(9,0)—zigzag : |d:|:(n)|2 ~ 10~ 1%.u.
(8,2)—chiral :  |d+(n)|? ~ 10711 — 107 124.0.

* J. L. Krause, K. J. Schafer and K. C. Kulander,
Phys. Rev. A 45, 4998 (1992).

The cutoffs:

(5,5)—armchair: pg~ 6.5a.u.
(9,0)—zigzag: po~ 6.7a.u.
(8,2)—chiral:  pg~6.9a.u.

2eliopo
hw

Ncytoff — 20
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HHGS of the (5,5)-armchair (“a"), the (9,0)-zigzag
(“z") and the (8,2)-chiral (“c”) CNT's. Eg = 0.05
a.u. (=~ 9 x 10" wW/cm?). w = 0.037 a.u. (A =
1.2um).
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HHGS of the (5,5)-armchair CNT at the field strengths
of Ep = 0.03 a.u. (=3x1023 w/cm?), “3", Eg = 0.04
a.u. (=~ 6 x 103 W/cm?), “4”, Eo = 0.05 a.u. (=
9 x 1013 W/cm?), “5”. w =0.037 a.u. (A=~ 1.2um).



Summary and
conclusions

1. Symmetry (space) + Light (time & space)
—= Dynamical Symmetry (space—time).

2. DS operations form groups. Consequently,
DS analysis of Floquet states is analogous
to symmetry analysis of stationary states. In
particular, one can label QE’'s and their corre-
sponding Floquet states with ‘“‘good” quan-
tum numbers, determine symmetry proper-
ties of QEB’s and analyze whether non-
accidental degeneracies can be found in the
QEB spectra following the existence of uni-
tary and anti-unitary DS’s.

3. DS analysis of high-order harmonic gen-
eration processes in high-intensity laser fields
has been placed on a firm foundation, analo-
gously to that possessed by symmetry analy-
sis in “conventional” spectroscopy.

4. In general, for 3D many-electron time-
periodic Hamiltonians which are invariant un-
der Py only the n = 1,N +£1,2N £+ 1,3N +
1, 4N £+ 1,... harmonics are generated.



5. The SR's derived for any single-walled
CNT'saregivenbyn=1, N+1,2N+1,3N +
1, 4N+1,..., where N is the number of hexagons
in its unit cell. These SR’'s are invariant
with respect to the wavelength of the incident
circularly-polarized laser radiation, as well as
to its helicity.

The considered (5,5)-armchair CNT gives rise
to the HHGS which is both selective and effi-
cient enough to be of interest to experimen-
talists. The chiral CNT’s are the first exam-
ple of realistic physical systems for which all
harmonics but very high-order ones are for-
bidden by symmetry.

The selective HHG by CNT'’'s can be used for
the structural analysis of the nanotubes sam-
ples. The relative strengths of the harmonics
allowed for different CNT's can provide an
information about the relative abundances of
the various symmetry species in the sample.



We hope that the further development of
present day technologies of growing arrays of
CNT’s parallel to each other and preparation
of ropes containing CNT'’'s of a single defi-
nite symmetry would allow the experimental
verification of the above theory.
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