A MICE muon identifier based on the KLOE calorimeter design

- •The task
- Detector concept
- •Technical drawings
- Simulation and PID

The task

➔ Provide "final" muon tag with highest possible Efficiency and Purity > 99.9%

Spectra and energy distributions:

- Softer particles than previously estimated
- Electrons are more spread out than muons

Fine-grained calorimeter technique

1mm diameter scintillating fibres embedded in grooved lead layers

Same construction technique as KLOE e.m. calorimeter

Lead-fibre composite

 $X_0 \approx 20 \text{ mm} \text{ (estimated)}$

X₀≈12 mm (experimental)

Lead foils

Spools of lead foils of various thickness for tests (LNF & Roma III)

Lead-shaping machine

60 cm

The grooving rollers consist of 13 "disks" (*), 50 mm thick and 400 mm in diameter, made of hardened steel and ground to shape by a sintered diamond tool; the rollers are fixed by means of ball bearings (*) on a very rigid frame and are aligned and checked with a set of micrometers.

- Achievable thickness uniformity is around few tens of μm and
- The grooves can deviate from a straight line by less than 0.1 mm per foil length.

Designed and used for construction of KLOE EmCal (barrel modules)

(*) require some maintenance and/or replacement

Machine dismantled for refurbishing

Balls bearing to be replaced

The grooving roller

Spare disks at Roma III (thanks to S.B.)

MICE calorimeter

Lead-shaping

Lead spool

Big lead shaping machine

Tests at LNF Metrology lab

Measurement

MICE calorimeter

Scintillating fibres

- Pol.Hi.Tech is out of the game
- Offer by Kuraray
 only for SCSF 81 type
 (aingle and double aladding

(single and double cladding)

428		2.3			
		1000	>3.0	General Use	
437	See the	2.4	>3.5	Long Attenuation Length	
450	figure	2.8	>4.0	Long Att. Length and High Light Yiel	
n 530		7	>4.5	3HF formulation fo Radiation Hardnes	
	e 450 n 530 1mmø. i PMT and UV	fellowing 450 figure n 530 1mmø. i PMT and UV light (254nm)	fellowing – 2.8 n 530 figure 2.8 n 530 7 1mmø. i PMT and UV light (254nm). Quality control	fellowing 2.8 >4.0 n 530 7 >4.5 1mmø. i PMT and UV light (254nm). Quality control is made by ano	

 Foreseen cost for 25 km ≈ 20 keuro (tax free, transport included)

Calorimeter assembling

Example of Single plane with double side read out

Example of four planes superimposed alternating the fibers direction

Readout: Light guides

 $\begin{array}{c} 3.5 \text{ x } 3.5 \text{ cm}^2 \\ 4 \text{ x } 4 \text{ cm}^2 \\ 4 \text{ x } 2.5 \text{ cm}^2 \end{array}$

Final design to be defined accordingly with optimal cell size

(simulation studies in progress)

MICE calorimeter

Readout: PMTs

Photomultipliers and H.V. system previously used in **CHORUS** and **HARP**, then installed in **T2K**, now taken to **MINOS** (will be back in time!)

- Photomultipliers Hamamatsu 1355
- Voltage dividers 2624 type
- Housing boxes with 2 mu-metal shielding each
- Impedance adapters
- HV system available (to be recovered from Roma I and/or CERN)

Components assembling

Plane assembling

Sector active area 40x120 cm²:

- Max transverse size set by grooving rollers width
- No limitation on longitudinal size

Plane active area120x120 cm²

Calorimeter assembling

Calorimeter mounting

Calorimeter mechanical support structure

Insertion in the downstream PID support structure (design under way by S.Yang)

Cost estimates

Rawiwerenais and Lanes	Hower	Unicosi	ema na	03	\alle
Fibers SCSE-81	Kuara/	10	2500	25000	vacio
Leadfails	Cofermetal	50	160	800	
Ortical Gue BC600	Biggin	žũ	40	8000	
Plexiclass for Licht Glides	Bolicenter	15	240	3600	
Mmetalsheets	HABBLICK	10	240	0.000	24M
Bayes for FM&Dviders Hausing	HABBICK	25	120		300
Cables and Connectors for HV and Sonal	HARPHON	30	490		14.400
Miscellanea (Tools Mular Consumplie)	1111121	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5000	1-1-1-00
Total				49.600	10,800
loca				40.000	13.000
Instrumentation					
Photomutupliers (Hamamatsuprice list)	HARPHON	600	240		144.000
Voltage dviders (Hamamatsu price list)	HARPICA	215	240		51.600
HV MainFrameSY127 (CAENprice list)	CHORUSHARP	9.000	6		54,000
HV Power Supply A333 (CAEN price list)	CHORUSHARP	600	240		144.000
Impedance Adapters	HARP	300	16		4.800
Splitters (t.b.d.withTOF)	CAEN	200	120	24.000	
CFDsoriminators (t.b.d.withTCF)	CAEN	200	120	24.000	
MECrate for ADC & TDC	CAEN	8.000	2	16.000	
1DCcharmels (same as 10F2)	CAEN	150	120	18.000	
ALC chamelas (same as ICF2)	CAEN	150	240	36.000	
LAQmaales VI/18	CAEN	600		12000	202.400
loca				130.000	390.400
Construction (workshop operation and insta	ation)				
Chapters and Ti nimul card Sustrim Michines	ancancery			am	
Omination of State	Con Torb			3.000	
Goowing of Lead of Beas	Con Tools				
Ministra Carol init Olidos	Can Tach				
Wel Costing and Chairm	Can Tech				
Total for External Warkings @Con Toda	Garriedh			95.000	
Medules Werkings Staning Deliching	OMCC			5000	
Make Second Mathemical Surgerts (a)	awaa			5000	
Cichal Machanical 9 mont Frame (a)				500	
Installation costs				500	
Instalic functions (a)				500	
raurra el wurrvo sgre curredos (a) Tatal				110,000	
lota				119.000	
(a) = E-timeta fan 2007 haalanta ann					
(a) = Estimate for 2007 budget year Come Tatal				000.000	40.000
Ganlota				296.600	418.200

Electron vs muon identification

Pattern of visible energy

It's possible to distinguish **electrons** from **muons** by means of :

- ⇒ path reconstruction based on the energy released inside the calorimeter's elements
- ⇒ combination of cluster length, total energy, energy per plane ...

Example: KLOE Barycenter depth

Calorimeter simulation and PID

- Calorimeter simulation in G4MICE (by R.Sandstrom)
 - Full geometry (fiber-by-fiber)
 - Detailed digitization
 - Validation from comparison with KLOE data (in progress)
- Particle identification: separation of positrons from muons with a Neural Network
 - 11 input variables: total charge, shower barycenter depth, products and ratios of amplitudes at two sides in each layer
 - Excellent efficiency and purity achieved

PID with a Neural Network

The result, with

- Muon momentum ~200 MeV/c
- full simulation of cooling channels and downstream detectors
- electrons from "true" muon decays (initial purity 99.542%)

PID with a Neural Network

Work in progress to achieve best possible μ tag downstream:

- Best use of full calorimeter information (incl. timing)
- Combination with other detectors (tracker, TOF, Ckov)

EmCal Summary

- Fine grained calorimeter: scintillating fibers embedded in grooved lead foils
 - Lead layer thickness 0.3 mm
 - Read-out: 4 Layers, each read out by PMTs at both ends
 - Read-out cell size: 4x4 cm² or 3x5 cm²
 - Total calorimeter size: 120 x 120 x (16 or 12) cm³
- Muon/electron separation based on energy deposition and shower development
 - Identification algorithms studied with G4MICE
 - using a Neutral Network, purity and efficiency >99.9% canbe achieved
- PID capabilities are adequate for MICE requirements
- In progress: design optimisation

MICE calorimeter