Status of the TPG

E.Radicioni MICE coll. Meeting - Frascati, 27-28 June 2005

Outline

- Construction and operation
- Update on performances
- Design aspects
 - Electronics
 - Field-cage
 - Gas choice
 - Outlook

Detector schematics

TP

G

The GEM foil

- Triple-layer structure
- Each layer divided in 8regions, independentlypowered
- Max amplification depends on gas and HV. With good gas it can be as high as 10⁶.\

The hexaboard

- ~710000 hexagonal pads
 - size: 300 µm
 - pitch: 500 µm
- grouped into strips along 3 coordinates at 120 degrees (u, v, w) running at different depths

... to this:

27/06/2005

Support structures

- 1. outer metal ring
- 2. o-rings for gas tightness
- 3. stiffener plate
- GEMs support rings
- 5. guard ring

Assembling the detector

27/06/2005

⁵⁵Fe source calibration

- Absolute energy, equalization
- Preamp gain calibration is not included yet
- First indications are
 - Despite the lack of gain equalization, the energy resolution is already quite good
 - The plots are very sensitive to the cuts on cluster size, as expected from a properly working detector

⁵⁵Fe source

27/06/2005

U,V vs. W correlations

out-of-line events are due to lack of gain calibration
Correlation is important: it can be exploited as an additional tool for getting rid of fake combinations

 In addition to the use of the 3rd projection

 Compass is able to reject (almost all) fakes by this technique

27/06/2005

Low energy tracks

500 samples @10MHz • Ar/CO₂ 90/10, 10cm/µs → total 50cm drift path e- from Sr source B=0.07T (1/10 nominal) Color code gives charge amplitude

2 MeV/c electron in B=0.07T Transverse diffusion spreads the charge

27/06/2005

Intrinsic resolution

 ⁵⁵Fe X-ray conversion position can be determined by 2 projections, then cross-checked with the 3rd one.

- The intrinsic resolution is VERY promising
- This has been obtained with a 3cm drift cell.
- Actual resolution over longer drift depends on gas properties.

Design improvements

- Electronics
- Ingredients for good resolution
- Gas choice
- Discussion on overall parameters
- A compact emittometer, alias TPG ?

Electronics

- New electronics from ALICE
- Higher integration
- Total (including DAQ) 10 CHF / channel
- Digitization is close to detector (less noise)
- Data get out from the detector on a few optical fibers (elegant, simple)
- Large range of possible sampling frequencies up to 40 MHz.

ALTRO EVOLUTION

27/06/2005

Digital Conditioning of the TPC Signal

27/06/2005

A possible TPG electronic chain

- From left to right
 - Signal inverter
 - 128-channels ALICE TPC front-end
 - USB readout card
- Addition of protection diodes possible.
- Electronics noise ~ 1K electrons, depending on cable length
 - Total S/N depends on amplification. Can be quite high with good gas mixture.
- Being designed for a different experiment, straightforward application to TPG

Momentum resolution

- Position resolution is driven by
 - Readout pitch (fixed)
 - Diffusion in gas
 - Ionization and gain
- Gas choice is a key point: we should look for larger gain and ionization and smaller diffusions.
- Momentum resolution is driven by
 - Position resolution
 - Number of available points
- From the simple Glukstern formula: 50 points give dp/p resolution factor only 1.5 better than 20 points.
- If more distant points are affected by more diffusion, we should really consider limiting the number of points and the drift length.

Shorter field-cage?

	He/CO ₂ 1m	Ne/CO ₂ 18cm
Е	500 V/cm	300 V/cm
Max HV	50 KV	5.4 KV
Drift time	60 μs	6 μs
Drift velocity	1.68 cm/µm	3 cm/µm
Sampling freq	2MHz	10MHz
Number of samples	118	60
Specific ionization	10 e ⁻ /cm	20 e ⁻ /cm
Usable long. Slices	118	20 (shaper limited)
N. Radiation lenghts	6.6 E-4	5 E-4
X-ray abs. Coeff.	2.5 E-5 cm ⁻¹	1.2 E-4 cm ⁻¹
X-ray abs. probability	1	0.4
Electronics	HARP	ALICE

Advantages of a short TPG with Ne

- Straightforward "poor's man" construction
 - 20 cm field-cage made of a small insulating cylinder internally covered by a Cu-clad Kapton foil.
 - Field shaping strips made by Cu etching
 - Moderate HV
 - Simple insulator
 - More friendly for safety
- Lager ionization
 - Better resolution
- Faster mixture
 - Less sensitive to X-ray background

27/06/2005

Simulation / reconstruction

- Short (18cm) and long (1m) Ne/CO₂ TPG have been simulated in G4MICE and reconstructed.
 Thanks to Rikard and Olena
- Results are very encouraging, even if for the moment – the experimental resolution is not reproduced in the MC
 - Maybe due to different gas mixture
 - If X-ray background not a problem, one could go to Arbased mixtures -> even better TPC performance
 - Slightly more material, but TPG starts from very low amount
- Simulation results should be considered as upper limits.

27/06/2005

	Short	Long
$P_t rec - P_t mc$	0.53 MeV/c	0.37 MeV/c
$P_1 rec - P_1 mc$	1.63 MeV/c	1.27 MeV/c
X residual	0.22 mm	0.26 mm
Y residual	0.23 mm	0.25 mm

- Residuals not in line with measured position resolution (~0.04 mm). Need more studies.
- Notice the better momentum resolution of the longer TPG, compared with the (average) worse residuals
 - "long" is too long, the last part of the track has larger residuals and is practically useless in the fit
- "short" and "long" are extremes
 - Marginal improvement due to 1/sqrt(N) in Gluckstern formula combined by diffusion at long drift path indicates a possible optimum at ~40 point (30 to 35 cm)

Outlook

- New design could allow to build a full detector with simple means and at a very (very) moderate cost
- New electronics has the necessary "grade" for application in the real experiment
 - S/N is OK
 - No rate problems whatsoever (as many muons per spill as you want)
 - More test data taking will be made with the new electronics ... But do not expect this for tomorrow
- Simulation/reconstruction is catching up, but needs further study
- TPG is not any more on the critical path, but it keeps moving slowly under the water surface ...