
An Optics Package for G4MICE

Chris Rogers
MICE Optics Session

Introduction

• Advertisement for G4MICE Optics code
– New users/developers welcomed!!

• Motivation
• Requirements
• Design status
• Advanced warning - you will be exposed to technical

details
– But I will assume you don’t know any programming (apologies if I

patronise)

Motivation
• We will need to manipulate beam optics in the MICE

analysis
– E.g. non-linearities/emittance growth

• Integrating with G4MICE provides some nice functions
– Use G4MICE field maps

• Writing our own package means we can customise
functionality
– RF + Materials + B-Fields in ~ 20 cm
– Specify sensitivity to emittance changes

• Current design has been used for position diffuser
• Also will be developing longitudinal dynamics

User (My) Requirements

• Add your own to the bottom:
– Calculate optical functions in solenoids, quads, material, RF
– Optimise optical function in Beamline

• Quad positions, currents/field

– Optimise optical function in MICE itself
• Optimise solenoid currents

– Place constraints on beta (& alpha) functions
• “beta should be 333, alpha 0 in upstream solenoid”
• “beam shouldn’t scrape in the quadrupoles”

– Eventually… calculate higher order/non-linear terms in optics
• Get at emittance growth

– Eventually… ~arbritrary functions for optimisation
– Other suggestions are welcome!

BetaFunction
Does the integration
Looks after various optical components

Material
Gives kicks to the optical function for
materials of different thickness and type

Quadrupole
Returns focussing function K

Minimiser
Interfaces with Minuit

Solenoid
Calculates on axis field and
returns focusing function K

Class Diagram
ParameterList
Container for Parameter

Parameter
Optimisable Parameter
e.g. solenoid current

OpticalComponent
Abstract optical component

Optimiser Classes

Beta Calculation Classes

Beta Function Calculation
• Hacked from JHC’s numerical integration using “Finite

difference method”
– Integrate well known eqn
– Faster/more accurate to use Runge-Kutta?
– Solenoid, Quadrupole provide K(z)

• No fringe fields in quads

• Slightly different in materials
– Uses things like

– No kick from B-fields
– Assumes material is thin (but not emittance kick is small)
– Can step backwards or forwards through the absorber

044)'(''2 222 =−Κ+− ββββ

µ

εβθεε
m

pd zoldold
oldnew

><+=
2

22

• Beta through MICE
– No material though not difficult to put some in

• Beta through beamline
– Material, quads, solenoids

Examples

Sample output

z bz beta alpha pz em kappa

-5700 0.00384078 333 0 200 6 0.00288059 0 0.00288059

-5690 0.00385122 333 0 200 6 0.00288841 0 0.00288841

-5680 0.00386091 333.045 -0.00224805 200 6 0.00289569 0 0.00289569

-5670 0.0038699 333.132 -0.00434838 200 6 0.00290243 0 0.00290243

-5660 0.00387822 333.258 -0.00630379 200 6 0.00290867 0 0.00290867

…

• Output for command
• z position
• on axis Bz
• beta
• alpha
• <pz> of particles
• emittance of bunch
• Focusing strength at z (solenoid, quadrupole, solenoid + quadrupole)

•Still quite flexible so may change this

Optimiser

• Optimise Parameters (e.g. solenoid currents) using Minuit
– Takes a list (array) of parameters (doubles)
– Calculates an arbritrary function that outputs a number
– Tries to minimise the output of the function

• Interface with Minuit parameters using a C++ object
– Allows tricks like the same parameter can look at multiple

components
• E.g. we can use the same current for different solenoids

– Or we can

• Scoring algorithm (which we minimise)
– use a number of constraints on α and β

�� −+−=
sconstraint

requiredmeasured
sconstraint

requiredmeasured cscore 22)()(ααββ

• Current evolution over time
– Currents converge pretty quickly
– Processing time ~ minute (on a single Imperial cpu)
– But fairly simple problem

-20

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000

Example - two parameter
optimisation

Beta function

• Beta started as blue
– Finished as red
– Pretty simple problem

0

200

400

600

800

1000

1200

1400

-5
70

0

-5
19

0

-4
68

0

-4
17

0

-3
66

0

-3
15

0

-2
64

0

-2
13

0

-1
62

0

-1
11

0

-6
00 -9

0

42
0

93
0

14
40

19
50

24
60

29
70

34
80

39
90

45
00

50
10

55
20

Sample code
• Interface still requires user to go into code

– User interface better?

• Takes advantage of c++ “black box” architecture
– Commands like

– Placing emphasis on usability and extensability
• Needs feedback from users

Things Optics can do
• Flexible Parameter definition

– Multiparameter optimisation
– Single parameter to multiple objects
– Quad currents, positions
– Use free parameters or constrained parameters
– Solenoid currents

• Constraints on beta, alpha
• Materials

– Specify by x0, dEdz, or material name
– Calculate length given some desired emittance

• Solenoids + fringe fields
• Field maps
• Quads - no fringe fields

Future - Longitudinal Cooling

• Aim to write proposal for longitudinal cooling in MICE
– Single wedge - MICE “IV.wedge”
– Wedges and RF - MICE “V.wedge”
– Wedges, RF and Tilted solenoids (ambitious) MICE “VII.wedge”!

• Optics and simulation study
– Dispersion, longitudinal dynamics

Future - Non-linear dynamics

• Calculate emittance increase from non-linearities in the
Hamiltonian
– Taylor expansion
– Lie expansion (Dragt et al)

• Famous plot by Bravar (not shown)
– Symmetric?
– Software induced?

• Runga-Kutte (GEANT3/4) is non-Symplectic

– Measurable?
– Calculable?

[] zyyxxt qAqApqApmqpH −−−−−−+= 2/12222)()()(φ

...)(''
16

)(
2

3

+−≈ zB
r

zB
r

Aφ

A brief technical note
• Analysis will need access to the Optics package…

– But shouldn’t be able to see Geant4

Geant4 BeamTools Optics Analysis

Engineering
models etc

Geant4

BeamTools Optics Analysis

Engineering
models etc

Conclusions

• We have a great new tool in G4MICE
– Lots of nice functions
– Reusable/extendable

• New users and developers are welcome
– Software development should be done in the

G4MICE framework for the common good!
– chris.rogers@imperial.ac.uk

• Some interesting projects for the future

Lie Algebra “expanded”
• Define a transfer map by
• Then can be found using the usual Taylor expansion or

using a definition like

• Where :f: is defined by

• Then the moments at the end of the channel can be found
using

• Which can be used to get the change in emittance

startfinal UMU =

:)exp(: fM =

� ∂∂∂∂−∂∂∂∂=
i

iiii xpfpxff)/)(/()/)(/(::

�=
β

βαβα
startend mMDm)(

M

Lie Algebra “expanded” 2

• Calculate using

• Some nice features
– can be truncated to nth order
– Truncated terms are independent and symplectic

• Not sure how to calculate Dαβ

M

:: HM
dz

Md
−=

M

