Diffuser & Analysis Requirements on Beamline

Chris Rogers 24 June 2005

Introduction

- Analysis requirements on Beamline
 - Minimum emittance
 - Or minimum statistics
- Some thoughts on the diffuser
 - Angular momentum
 - Iron plate
 - Multiple diffusers

Requirements on Beamline

- Transverse phase space two requirements:
 - Require that we can produce a beam that completely fills the cooling channel to scraping
 - Require that we can produce a beam at less than equilibrium emittance
 - And probably beams in between
- OR increase statistics at other emittances (e.g. > equilibrium emittance)
 - See subsequent slides
- Different beta function requirements for different optical set ups and p_z
- Need to be able to produce beams of $\langle p_z \rangle$ between 140 MeV and 240 MeV (TRD) and $\sigma(E) \sim 25$ MeV

– Really this means p_z between ~100 and ~270 MeV

• Need to think about timing but should be easy

Diffuser

I will be using the setup depicted on the right

- Optical functions at Sept04 Q9 vs emittance in MICE
 - Set diffuser thickness with requirement for emittance in MICE and beamline
 - Then propagate beta backwards and read off alpha and beta
 - Input beamline emittance 2 pi mm rad
- Alternative is to increase statistics

- LH₂ absorber will heat particles in the bunch centre and cool particles in the bunch wings
- There will be an equilibrium point
- Requirement for beamline is that the number of particles with SPE below this equilibrium is the same as for an ~ 10⁶ muon bunch

Simulation Results

• Not obvious where equilibrium point lies

Statistics

- Number of particles in central region of phase space is small
 - Phase space is a 4D hypervolume

Summary of Requirement

• Increasing beamline emittance puts a requirement on rate that lies somewhere between the two lines

Direct Measurement Preferred

- Bad alternative is to do an indirect measurement of equilibrium emittance
 - Measure emittance at two points and extrapolate

• Or just do a simulation optimisation (but also bad)

- G4MICE now has code that can find optical solutions for the Beamline
 - Quads, solenoids
 - Materials
- Integrated with Minuit for optimisation
 - Optimise for quad positions, quad currents, (solenoid currents)

- Canonical angular momentum $L_{can} = L_{kin} 2m_{\mu}\varepsilon_n\beta \bar{K}$
- For the plot I assumed 4 T field
- Should be conserved i.e. 0
- Looks to be $L_{can} \sim 10\% L_{kin}$ in the 4 T region so should be ok
- But very preliminary result (Analysis needs to see field map)

Effect of iron plate

- B_z coming out of solenoid only changed in fringe
 - Barely noticeable effect on β
 - Note no diffuser in this plot

Multiple diffusers etc

- Try exotic solutions to getting the diffuser out of the solenoid bore
 - Moving diffuser puts tough requirements on quads
 - Multiple diffusers helps quite a lot

	Approximate change in Beta at Q9	Approximate change in Alpha at Q9
Diffuser to solenoid end, 3-12 pi beams	*4	*3
Diffuser to solenoid end, fixed 3pi diffuser, 6 pi beam	*1.5	*1.25

 There is now a solution for a diffuser in the solenoid bore and optical solutions for the beamline so I don't plan to pursue further

Conclusions

- If a low emittance beam cannot be successfully matched into MICE, an increase in the number of events at higher emittance is possible
- The iron shielding doesn't really have any effect on beam optics
- The introduction of a diffuser does not interfere with the beam angular momentum
- It might be possible to do something clever with multiple diffusers if the current diffuser solution fails