A study of CP asymmetry in $B^0 \rightarrow D^{(*)}\pi$ and $B^0 \rightarrow D\rho$ decays in BaBar

Francesco Polei

INFN Roma

& Universita' di Roma "La Sapienza"

LNF Spring School

18 May 2004

2 β + γ **phase in B** \rightarrow **D**^(*) π

Theoretical assumptions

- × Final state not *CP* eigenstate \Rightarrow extract strong phase δ from $A_D^-\pi^+(t)$ and $A_D^+\pi^-(t)$
- × Need to evaluate : $\lambda = r e^{-i(2\beta + \gamma \delta)} = \frac{A(B^0 \to D^{(*)+} \pi^-)}{A(\overline{B}^0 \to D^{(*)+} \pi^-)} e^{-i(2\beta)}$ Expected: $r \approx \left| \frac{V_{ub}^* V_{cd}}{V_{ud}^* V_{cb}} \right| \approx 0.02 \Rightarrow \text{ small } CP \text{ asymmetry}$
- × <u>Problem</u>: *Doubly Cabibbo Suppressed* not directly measurable. <u>Solution</u>: Use $B^0 \rightarrow D_s^{(*)+} \pi^-$ assuming :
 - *SU*(3) symmetry
 - W-exchange negligible $\Rightarrow B^+ \rightarrow D^{(*)+} K^0$

3

Use of $B^0 \rightarrow D_s^{(*)} \pi$

<u>We assume 30% theoretical error on *r*</u>

4

CP asymmetry in $B^{o} \rightarrow D^{(*)}\pi$ & $B^{o} \rightarrow D_{\rho}$ decays

Annihilation & W-exchange

 $\star B^+ \rightarrow D^{(*)+} K^0$ is a pure annihilation process.

- * Annihilation & W-exchange are the same kind of process in OPE.
- No precise theoretical evaluation (factorization is not possible)
- × One expect also a suppression factor: $f_B/m_B \sim \lambda^2_{cab}$
- \varkappa Theories considering rescattering predicts amplitude enhancement of $\lambda^2_{\mbox{ cab}}$
- × Usually neglected

× We find (@ 90% CL):

$$BR (B^+ \rightarrow D^+ K^0) < 2.2 \cdot 10^{-5}$$

 $BR (B^+ \rightarrow D^{*+} K^0) < 1.3 \cdot 10^{-5}$

CP asymmetry in $B^{o} \rightarrow D^{(*)}\pi$ & $B^{o} \rightarrow D\rho$ decays

Annihilation diagram

5

Time-dependent analysis

 $\Gamma(B \to D^{(*)}\pi) \propto 1 + \xi_m \cos(\Delta m \Delta t) - [\xi_l a + \xi_m c + \xi_l \xi_m b] \sin(\Delta m \Delta t)$

6

 $\xi_{m} = 1(-1) \text{ for events tagged} \\ \text{ as unmixed (mixed)} \\ \xi_{l} = 1(-1) \text{ for } B_{tag} \text{ identified as } B^{o}(\overline{B}^{o}) \\ \mathbf{r}', \delta' \text{ are the ratio and difference between} \\ \text{ the } \mathbf{b} \rightarrow \mathbf{u} \text{ and } \mathbf{b} \rightarrow \mathbf{c} \text{ amplitudes in the } B_{tag} \\ \text{ decay. } \mathbf{r}' = 0 \text{ in lepton tags.} \end{cases}$

$$a = 2r \sin(2\beta + \gamma) \cos\delta$$

$$b = 2r' \sin(2\beta + \gamma) \cos\delta'$$

$$c = 2 \cos(2\beta + \gamma) (r \sin\delta - r' \sin\delta')$$

CP asymmetry in $B^{o} \rightarrow D^{(*)}\pi$ & $B^{o} \rightarrow D_{\rho}$ decays

Full reconstruction

Partial reconstruction

Results

From Time–Dependent Maximum Likelihood Fit

		a	c _{lep}
Full reco	D π	$-0.022 \pm 0.038 \pm 0.020$	$0.025 \pm 0.068 \pm 0.033$
	$oldsymbol{D}^*\pi$	$-0.068 \pm 0.038 \pm 0.020$	$0.031 \pm 0.070 \pm 0.033$
Partial reco	$oldsymbol{D}^*\pi$	$-0.022 \pm 0.038 \pm 0.020$	$-0.022 \pm 0.038 \pm 0.020$

9

Partial reco has 5% overlap with full reconstruction sample

Systematics

- **x** Control sample statistics
- **x** Monte Carlo statistics
- **x** Detector alignment
- **x** Tagging
- ***** Background modeling
- × Fit procedure

CP asymmetry in $B^{0} \rightarrow D^{(*)}\pi$ & $B^{0} \rightarrow D\rho$ decays

Limits on $sin(2\beta+\gamma)$: strategy

x The observables *a* and c_{lep} are functions of the physical parameters $sin(2\beta+\gamma)$, δ , *r*.

× Minimize:

$$\chi^2 (sin(2\beta+\gamma), \delta, r) = \Sigma_i \left(\frac{x_i - x_i^{meas}}{\sigma_i^{meas}}\right)^2 + \Delta(r_{D\pi}) + \Delta(r_{D^*\pi})$$

× Large errors and edge effects near $sin(2\beta+\gamma)=1$, so χ^2 highly non-quadratic

- **×** Use a frequentist approach to obtain a limit on $|sin(2\beta+\gamma)|$:
 - Run many parameterized *MC* experiments for different values of $sin(2\beta+\gamma)$
 - The fraction of such experiments for which $\chi^2 (sin(2\beta+\gamma) \chi^2_{min})$ is smaller than in the data is the confidence level of the lower limit for that value of $sin(2\beta+\gamma)$

CP asymmetry in $B^{0} \rightarrow D^{(*)}\pi \& B^{0} \rightarrow D_{\rho}$ decays **10**

Limits on sin(2 β + γ): results

CP asymmetry in $B^{o} \rightarrow D^{(*)}\pi \& B^{o} \rightarrow D_{\rho}$ decays **11**

Francesco **P**olei

$sin(2\beta+\gamma)$ with $B \rightarrow D\rho$

12

CP asymmetry in $B^{o}
ightarrow D^{(*)}\pi$ & $B^{o}
ightarrow D_{
ho}$ decays

Francesco **P**olei

Conclusions

- × Time dependent evolution of $B \to D(^*)\pi$ and $B \to D\rho$ decays is sensitive to *CP* violating phase $\sin(2\beta+\gamma)$.
- ★ Full reconstruction of $B \to D(*)\pi$ decays performed on $81fb^{-1}$: $a(D\pi) = -0.022 \pm 0.038 \pm 0.020$ $c(D\pi) = 0.025 \pm 0.068 \pm 0.033$ $a(D^*\pi) = -0.068 \pm 0.038 \pm 0.020$ $c(D^*\pi) = 0.031 \pm 0.070 \pm 0.033$
- × Partial reconstruction of $B \to D^*\pi$ decays performed on 76 fb^{-1} : a($D^*\pi$) = -0.063 ± 0.024 ± 0.014 c($D^*\pi$) = 0.008 ± 0.0037 ± 0.020
- × $B \rightarrow D\rho$ analysis needs to verify the presence of contributions other than ρ *in* $\pi\pi^{\rho}$ invariant mass.
- × The time-dependent maximum likelihood fit on $B \rightarrow D\rho$ is underway.

13

