A study of CP asymmetry in

$\boldsymbol{B}^{0} \rightarrow \boldsymbol{D}^{(*)} \pi$ and $\boldsymbol{B}^{0} \rightarrow \boldsymbol{D} \rho$ decays in BaBar

Franceseo Dolci

INFN Roma
\&
Mniversita' di Roma" La Sapienza"

$2 \beta+\gamma$ phase in $B \rightarrow D^{(*)} \pi$

Theoretical assumptions

\times Final state not $C P$ eigenstate \Rightarrow extract strong phase δ from $A_{D^{-} \pi^{+}}(t)$ and $A_{D^{+}} \pi^{-(t)}$
\times Need to evaluate : $\lambda=r e^{-i(2 \beta+\gamma-\delta)}=\frac{A\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right)}{A\left(\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}\right)} e^{-i(2 \beta)}$
Expected: $r \approx\left|\frac{V_{u b}{ }^{*} V_{c d}}{V_{u d}{ }^{*} V_{c b}}\right| \approx 0.02 \Rightarrow$ small $C P$ asymmetry
\times Problem: Doubly Cabibbo Suppressed not directly measurable. Solution: Use $B^{0} \rightarrow D_{s}{ }^{(*)+} \pi^{-}$assuming :

- $S U(3)$ symmetry
- W-exchange negligible $\Rightarrow B^{+} \rightarrow D^{(*)+} K^{0}$

Use of $B^{0} \rightarrow D_{s}{ }^{(*)} \pi$

We assume 30% theoretical error on r

Annihilation \& W-exchange

$\times B^{+} \rightarrow D^{(*)+} K^{0}$ is a pure annihilation process.
\times Annihilation \& W-exchange are the same kind of process in OPE.
\times No precise theoretical evaluation (factorization is not possible)
x One expect also a suppression factor: $f_{B} / m_{B} \sim \lambda^{2}$ cab
\times Theories considering rescattering predicts amplitude enhancement of λ^{2} cab
\times Usually neglected
x We find (@ 90\% CL) :

$$
\begin{aligned}
& B R\left(B^{+} \rightarrow D^{+} K^{0}\right)<2.2 \cdot 10^{-5} \\
& B R\left(B^{+} \rightarrow D^{*+} K^{0}\right)<1.3 \cdot 10^{-5}
\end{aligned}
$$

W-exchange diagram

Annihilation diagram

Time-dependent analysis

$$
\Delta t \approx \Delta \mathrm{z} / \gamma_{\mathrm{B}} \beta_{\mathrm{B}} \mathrm{c}
$$

$$
\Delta \mathrm{z} \sim 260 \mu \mathrm{~m}
$$

$\Gamma\left(B \rightarrow D^{(*)} \pi\right) \propto 1+\xi_{m} \cos (\Delta \mathrm{~m} \Delta \mathrm{t})-\left[\xi_{\mathrm{l}} \mathrm{a}+\xi_{\mathrm{m}} \mathrm{c}+\xi_{1} \xi_{\mathrm{m}} \mathrm{b}\right] \sin (\Delta \mathrm{m} \Delta \mathrm{t})$

$$
\begin{aligned}
\xi_{\mathrm{m}}= & 1(-1) \text { for events tagged } \\
& \text { as unmixed (mixed) }
\end{aligned}
$$

$\xi_{1}=1(-1)$ for $B_{t a g}$ identified as $B^{0}\left(\bar{B}^{0}\right)$
$\mathrm{r}^{\prime}, \delta^{\prime}$ are the ratio and difference between the $\mathrm{b} \rightarrow \mathrm{u}$ and $\mathrm{b} \rightarrow \mathrm{c}$ amplitudes in the $B_{\text {tag }}$ decay. $r^{\prime}=0$ in lepton tags.

Full reconstruction

81 fb-1 (hep-ex/0309017)			
	signal events	purity	
$B^{0} \rightarrow D \pi$	5207 ± 87	84.9%	
$B^{0} \rightarrow D^{*} \pi$	4746 ± 78	94.4%	

Time evolution for lepton category

Partial reconstruction

No efficiency loss for D^{0} reconstruction
$m_{\text {miss }}=D$ invariant mass

$$
A_{C P}=\frac{N_{B_{u g}^{0}}-N_{\bar{B}_{u g}^{0}}}{N_{B_{u g g}^{0}}+N_{\overline{B_{u g g}}}}
$$

$D^{*} \rho$ Combinatorial $B B$ Peaking $B B$ Continuum

Results

From Time-Dependent Maximum Likelihood Fit

		\boldsymbol{a}	Clep
Full reco	$\boldsymbol{D} \pi$	$-0.022 \pm 0.038 \pm 0.020$	$0.025 \pm 0.068 \pm 0.033$
	$\boldsymbol{D}^{*} \pi$	$-0.068 \pm 0.038 \pm 0.020$	$0.031 \pm 0.070 \pm 0.033$
Partial reco	$\boldsymbol{D}^{*} \pi$	$-0.022 \pm 0.038 \pm 0.020$	$-0.022 \pm 0.038 \pm 0.020$

Partial reco has
5% overlap with full reconstruction sample

Systematics

x Control sample statistics
x Monte Carlo statistics
x Detector alignment
\times Tagging
x Background modeling
x Fit procedure

Limits on $\sin (2 \beta+\gamma):$ strateg y

x The observables a and $c_{l e p}$ are functions of the physical parameters $\sin (2 \beta+\gamma), \delta, r$.

$$
\begin{aligned}
& \times \text { Minimize: } \\
& \quad \chi^{2}(\sin (2 \beta+\gamma), \delta, r)=\sum_{i}\left(\frac{x_{i}-x_{i}^{\text {meas }}}{\sigma_{i}^{\text {meas }}}\right)^{2}+\Delta\left(r_{D \pi}\right)+\Delta\left(r_{D * \pi}\right)
\end{aligned}
$$

x Large errors and edge effects near $\sin (2 \beta+\gamma)=1$, so χ^{2} highly non-quadratic
x Use a frequentist approach to obtain a limit on $|\sin (2 \beta+\gamma)|$:

- Run many parameterized $M C$ experiments for different values of $\sin (2 \beta+\gamma)$
- The fraction of such experiments for which $\chi^{2}\left(\sin (2 \beta+\gamma)-\chi^{2}{ }_{\text {min }}\right.$ is smaller than in the data is the confidence level of the lower limit for that value of $\sin (2 \beta+\gamma)$

Limits on $\sin (2 \beta+\gamma)$: results

$\boldsymbol{C P}$ asymmetry in $\boldsymbol{B}^{\boldsymbol{o}} \rightarrow \boldsymbol{D}^{()} \pi \& \boldsymbol{B}^{0} \rightarrow \boldsymbol{D} \rho$ decays

$\sin (2 \beta+\gamma)$ with $B \rightarrow D \rho$

If only a ρ component in the selected $\pi \pi^{0}$ invariant mass region:

- same time evolution of $\mathrm{D}^{(*)} \pi$ final states (sensitive to $\sin (2 \beta+\gamma)$)
- same analysis technique

Detailed background studies underway

We are working

for a global fit of $B \rightarrow D^{(*)} \pi$ and $B \rightarrow D \rho$
to improve constraints on
$\sin (2 \beta+\gamma)$

Conclusions

\times Time dependent evolution of $B \rightarrow D\left(^{*}\right) \pi$ and $B \rightarrow D \rho$ decays is sensitive to $C P$ violating phase $\sin (2 \beta+\gamma)$.
x Full reconstruction of $B \rightarrow D\left(^{*}\right) \pi$ decays performed on $81 \mathrm{fb}^{-1}$:

$$
\begin{array}{ll}
\mathrm{a}(D \pi)=-0.022 \pm 0.038 \pm 0.020 & \mathrm{c}(D \pi)=0.025 \pm 0.068 \pm 0.033 \\
\mathrm{a}\left(D^{*} \pi\right)=-0.068 \pm 0.038 \pm 0.020 & \mathrm{c}\left(D^{*} \pi\right)=0.031 \pm 0.070 \pm 0.033
\end{array}
$$

x Partial reconstruction of $B \rightarrow D^{*} \pi$ decays performed on $76 \mathrm{fb}^{-1}$:

$$
\mathrm{a}\left(D^{*} \pi\right)=-0.063 \pm 0.024 \pm 0.014 \quad \mathrm{c}\left(D^{*} \pi\right)=0.008 \pm 0.0037 \pm 0.020
$$

$x B \rightarrow D \rho$ analysis needs to verify the presence of contributions other than ρ in $\pi \pi^{0}$ invariant mass.
x The time-dependent maximum likelihood fit on $B \rightarrow D \rho$ is underway.

