

Measurement of t.d. CP Asimmetry in $B \rightarrow K^0_s \pi^0 B \rightarrow K^{*0} \gamma$

Maurizio Pierini

Universita' di Roma La Sapienza & INFN Roma

CP, UTfit and New Physics

- UTfit proved consistency of CKM mechanism explaining flavour mixing and CP violation in the Standard Model
- → but b→s and b→d processes are not strongly constrained
 → new physics effects can be
- present in penguin loops

Bona et al. http://www.utfit.org

Standard Model Contribution Weak interaction SUSY contribution Strong interaction

<u>When only one CKM term enters the</u> <u>decay amplitude</u>

$$S_{f_{CP}} = \eta_{CP} \cdot \sin(2\beta)$$
; $C_{f_{CP}} = 0$

Maurizio Pierini

$\sqrt{2} \cdot \mathcal{A}(B^0 \rightarrow K^0 \pi^0) = -V_{ts} V_{tb}^* P_1(C) - V_{us} V_{ub}^* \{ T_c + P_1 GIM(U-C) \}$

From BR measurements we know that
 Kπ channels are dominated by P₁(C)...
 ...in particular in K⁰π⁰, where tree diagram is Cabibbo and color suppressed

- In SM S~ sin(2β) & C ~ 0

In SM the photon is almost fully polarized: $A_R \sim m_s/m_b A_L$ - New Physics effects can enhance A_R CP Asimmetry from a final state with mixed CP content. In SM C~0, S $< 2m_s/m_b$ $\cdot sin(2\beta)$ helicity suppression bL S_L ~m_b γ_{R}

New Physics: state of art

Ciuchini et al. hep-ph/0307191

Maurizio Pierini

Maurizio Pierini

Experimental technique

Maurizio Pierini

INFN

Δt determination: BC vertexing (I)

- Beam Spot Constrained Vertexing:
 - B meson forced to come from beamspot in transverse plane
 - Intersection of flight direction of the corrected K_s with z direction gives B vertex position

- Error inflated by (σ_{Bxy}) (4 μ m \rightarrow 30 μ m)
- Resolution dominated by tag side

Δt determination: BC vertexing (II)

We use Class I and Class II events

category events fractions

class	$B^0 \to K^{*0}\gamma, (K^{*0} \to K^0_S \pi^0)$	$B^0 \to K^0_S \pi^0$	$B^0 \to J/\psi K_S^0$
Ι	0.469 ± 0.003	0.373 ± 0.003	0.479 ± 0.003
Π	0.280 ± 0.003	0.273 ± 0.003	0.261 ± 0.002
III	0.049 ± 0.001	0.045 ± 0.002	0.061 ± 0.002
IV	0.201 ± 0.002	0.308 ± 0.003	0.198 ± 0.002

Δt determination: BC vertexing (III)

- $\bullet J/\psi$ K_s without J/ψ in the vertexing high statistics control sample
 - Data/MC Comparison
 - BC vtx /nominal vtx Comparison
- $K_s \pi^+$ without π^+ in the vertexing:
 - Check resolution and efficiencies for Class I and Class II
- Validation using Toy MC: unbiased pulls
- BC Vtx (blinded): $J/\psi K_S$

 $-C=0.238\pm0.077 \& S=0.484\pm0.113$

• Nominal Vtx (blinded):

→ C=0.272±0.073 & S=0.457±0.095

Analysis strategy

Kinematic Variables

•
$$m_{ES} = \sqrt{(\sqrt{s/2})^2 - p_B^{*2}}$$

• $\Delta E = E_B^* - \sqrt{s/2}$

Maximum Likelihood fit

- m_{ES} , ΔE , Legendre Fisher (K* mass) and Δt

0.04

0.02

0

-2

Spring School Frascati 2004

Maurizio Pierini

- Starting selection:
 *|cos(θ_{SPH})|< 0.8
- K_s definition cuts
 - → |m(ππ)-m(K_s)|< 11.2 MeV
 </p>
 - $\tau(K_s)/\sigma_\tau(K_s) > 5$
- π^0 definition cuts
 - 110 MeV < m(γγ)< 160 MeV
 - 0.01 < LAT < 0.6
 (shape of the EMC cluster)
 - → |cos(θ^{*}_γ)| < 0.95
 </p>

Selection

- $K^{*0}\gamma$ uses previously published BR analysis by *BaBar*
 - **→** R₂ < 0.9
 - EMC acceptance: $-0.74 < \cos\theta < 0.93$
 - $-0.115 < m_{\gamma\gamma} < 0.155 \text{ GeV}$
 - 0.487 < $m_{\pi\pi}$ < 0.508 GeV && Vtx OK && Flight length > 3 mm
 - → 0.8 < m($K_{s}\pi^{0}$) < 1.0 GeV
 - π⁰(η) veto: combining γ with other γ's in the event E > 50 MeV
 (250 MeV) we reject the event if
 - $0.115 < m_{\gamma\gamma} < 0.155 \text{ GeV}$ ($0.507 < m_{\gamma\gamma} < 0.588 \text{ GeV}$)
 - Bump isolated from neutral and charged clusters (> 25 cm)
 Second moment > 0.002
 Photon Selection
 - → $|\cos(\theta_{H})| > 0.6 \&\& |\cos\theta_{S}| < 0.9 + m(K_{S}\pi^{0})$ in the Fit
 - Best candidate selecte with $K_s e \pi^0$ mass pulls

BB background

- Negligible for $K_s \pi^0$ • Important in $K^{*0}\gamma$
 - strongly reduced by $\cos\theta_{H}$ cut
 - component in the likelihood with fixed yield
 - yield, S_{BB} e C_{BB} floated in [-0.5,0.
 for systematics
 - p.d.f. parameterized with seven MC samples ($K^*\gamma$, $\overline{B}B$, $X_s\gamma$)

- $B^0 \overline{B^0}$ (235M events $\approx 427 f b^{-1}$)
 - $-B^0 \rightarrow X_{sd}\gamma \approx 133 \text{ events}$
 - $B^0 \rightarrow D^{*+} l \bar{\nu}_l \approx 103 \text{ events}$
 - $B^0 \rightarrow K_2^{*0} \gamma \approx 22$ events
 - $-B^0 \rightarrow K_S \pi^0 \approx 20$ events
- B^+B^- (190M events $\approx 345 f b^{-1}$)
 - $-B \rightarrow X_{su}\gamma \approx 167 \text{ events}$
 - $B \rightarrow K^{*+} \gamma \approx 116$ events
 - $B \rightarrow K_2^* \gamma \approx 29$ events

Results for $K_s \pi^0$

Results for $K^{*0}\gamma$

Maurizio Pierini

Conclusions

- Now that sin(2 β) from b \rightarrow c is well known , B Factories can start testing SM with b \rightarrow s decays
- The Beam Spot Constrained Vertexing allows measurements previously considered impossible ($K_s \pi^0$ and $K^{*0}\gamma$ first)
- In principle we are statistics limited, but we can get $\sigma(S) \sim 0.2$. Can theoretical errors be reduced below such value?
- Belle didn 't try these new tecnique yet. It should be important to have their results, to reduce the error from B Factories. For sure their SVT has some problem in terms of Class I & Class II efficiency. Too many neutrals for experiments @hadronic colliders?