FOCUS Preliminary Results on D^0 decays into multi K_s^0 final states

> David Lopes Pegna University of Pavia

Motivations:

Non leptonic charmed mesons decays:

- The theoretical predictions are limited mainly to two body decay modes.
- Difficult calculations due to poor knowledge of charm hadronic wavefunctions; QCD short – distance effects and final state interactions (FSI).
 - Previous Measurements of D⁰ decays into multi K_s final states still have large uncertainties:

Decay Mode: $D^{0} \rightarrow K^{0}\overline{K}^{0}$ $D^{0} \rightarrow K^{0}\overline{K}^{0}K^{-}\pi^{+}$ $D^{0} \rightarrow \overline{K}^{0}\overline{K}^{0}K^{+}\pi^{-}$ $D^{0} \rightarrow K^{0}\overline{K}^{0}\pi^{+}\pi^{-}$

Branching Fraction: $(7.1 \pm 1.9) \cdot 10^{-4}$ - $(7.5 \pm 2.9) \cdot 10^{-3}$

Theoretical Predictions:

All modes, except for $D^0 \rightarrow K^0 \overline{K}^0 K \pi$ and $D^0 \rightarrow \overline{K}^0 \overline{K}^0 K \pi$, are Cabibbo suppressed.

The two - body decay is described by two exchange-type Feynman diagrams, which interfer destructively (due to CKM matrix element's signs).

Feynman diagrams for $D^0 \rightarrow K^0 \overline{K}^0$

Different models have been applied to the study of this decay mode:

- → Non factorizable contributions: factorization models estimate a null amplitude for D⁰ -> K⁰K⁰ decay mode. Non factorizable contributions, as final state soft gluon exchange, produce non zero amplitude
- → Final State Interactions (FSI): intermediate resonant states (i.e. f⁰ (1710)..)

or final state rescattering (OPE: One Particle Exchange)

Branching Ratio $\Gamma(D^0 \rightarrow K^0 \overline{K}^0) / \Gamma(D^0 \rightarrow \overline{K}^0 \pi^+ \pi^-)$ previsions range from 0. to 5.08%.

Successor to E687. Designed to study charm particles produced by ~180 GeV photons using a fixed target spectrometer with updated Vertexing, Cerenkov, EM Calorimeters, Hadron Calorimeter and Muon id capabilities.

Member groups from USA, Italy, Brazil, Mexico, Korea.

Events Reconstruction

 $D^0 \rightarrow K^0 \overline{K}^0 (+ K, \pi)$ decay mode is reconstructed through $D^0 \rightarrow K_s K_s (+ K, \pi)$ Secondary vertex is obtained combining K_s candidates and charged tracks (if any). For $D^0 \rightarrow K_s K_s$, a stand-alone Algorithm is used to reconstruct primary vertex. All the SSD tracks in the event (excluding those already associated with $K_s K_s$ reconstruction) are used to construct all the possible vertices. Among these, we choose the highest multiplicity vertex (ties are resolved choosing the more upstream vertex). For $D^0 \rightarrow K_s K_s K\pi (\pi\pi)$, D^0 candidate is used as seed track to intersect the other

tracks in the event to reconstruct primary vertex.

K Reconstruction

K_s Candidates are identified by the decay mode:

 $K_{s} \to \pi^{+}\pi^{-}$ (B.R.= 68.3 %) $\sim SSD K_{s}$: decayi

 SSD K_s: decaying upstream of SSD and composed of two linked SSD – PWC tracks;

- M1 K_s: two unlinked 3 or 5-chambers

Events Selection (1)

$-K_{s}$ Selection

A cut on $\pi^+\pi^-$ invariant mass around K_s nominal value

Cerenkov Cuts to remove possible misidentification with $\Lambda (\Lambda \rightarrow p\pi^{-})$

M1 K_s: a cut on distance of closest approach of π tracks

M1 K_s : a cut on error on longitudinal coordinate of K_s decay vertex

Charm decay selection

Selection Criteria for the two - body decay are different than for multi - body decays, due to poorer resolution on vertices.

• $D^0 \rightarrow K_S K_S$

- \cdot A momentum cut on D⁰ candidates
- A cut on the angle between the D^0 flight direction and the K_s direction in D^0 rest frame
- ✓ D* signature:

Events signature through decay chain $D^{*\pm} \rightarrow D^0(K_s K_s) \pi^{\pm}$ is used to

substantially reject the background. A cut is applied on the D* -D⁰ mass difference -> $|M(D^* - D^0) - 0.14542| < 0.002 \text{ GeV/c}^2$

Events Selection (2)

• $D^{0} \rightarrow K_{S}K_{S}K\pi (\pi\pi)$

- Cerenkov cuts for charged tracks
- Vertex quality cuts: Secondary and Primary vtx CL > 1%, isolation of secondary vtx
- A cut on charm decay length significance (L/ σ)
- No D* signature requested to isolate a signal

Charm Background rejection

Contaminations from different charm meson decay modes, which could produce reflections in D^0 mass region, have been studied.

✓ SSD K_s : a cut on decay length significance (L/ σ) removes misidentification with a $\pi^+\pi^-$ pair coming from the decay vertex. In particular, for the two – body decay, this cut removes possible contamination from D⁰ -> $K_s \pi^+\pi^-$ decay mode, for which K_s misidentification with a $\pi^+\pi^-$ pair yields a reflection in D⁰ mass region.

D⁰ Mass Plots

 Two gaussian for the signal, plus a Chebychev first order for the background
 shape fixed to MC Efficiency = 0.65 % ★ One gaussian for the signal, plus a polynomial second order for the background
★ shape fixed to MC

Efficiency = 0.154 %

★ One gaussian for the signal, plus a polynomial second order for the background

Efficiency = 0.16 %

Normalization channel: D⁰ -> $K_{s}\pi^{+}\pi^{-}$

 $D^0 \rightarrow K_s \pi^+ \pi^-$ decay mode has been used as normalization for B.R. measurement to minimize systematic errors connected with K_s reconstruction

Selection Criteria as much as possible equal to D⁰ -> K_sK_s (Kπ, ππ)
 Cerenkov cuts on charged tracks

Charm decay length significance
 * Same Parameterization as for 2K_s decay mode

 $\sigma_1 = 12.4 \text{ MeV/c}^2$ Mass=1.868 +/- 0.002 GeV/c²

Systematic Studies under investigation

The variable used for events selection have been studied:

- Different K_s type and different selection criteria
- Angular and momentum distribution
- Charm background
- Possible Resonant Contributions

The systematic uncertainty is found by splitting the data in statistically independent samples, as

- Different run period conditions
- Particle/Antiparticle
- High /Low Charm momentum

Other Systematic sources:

- Different fitting conditions
- Limited Montecarlo statistics
- Different K_s type and reconstruction

Preliminary Branching Ratio

$$\begin{aligned} \frac{\Gamma(D^{0} \rightarrow K^{0} \overline{K}^{0})}{\Gamma(D^{0} \rightarrow \overline{K}^{0} \pi^{+} \pi^{-})} &= 1.62 \pm 0.30 \% \\ \frac{\Gamma(D^{0} \rightarrow K_{s} K_{s} K^{\pm} \pi^{\mp})}{\Gamma(D^{0} \rightarrow \overline{K}^{0} \pi^{+} \pi^{-})} &= 1.13 \pm 0.20 \% \\ \frac{\Gamma(D^{0} \rightarrow K_{s} K_{s} \pi^{+} \pi^{-})}{\Gamma(D^{0} \rightarrow \overline{K}^{0} \pi^{+} \pi^{-})} &= 2.23 \pm 0.38 \% \end{aligned}$$

The errors reported are only Statistical.

Previous Measurements for $D^0 \rightarrow K^0 \overline{K}^0$:

CLEO II (26 ev)	$(1.01 \pm 0.22 \pm 0.16) 10^{-2}$
E687 (20 ev)	$(3.9 \pm 1.3 \pm 1.3) \ 10^{-2}$
CLEO (5 ev)	$(2.1^{+0.11}_{-0.08} \pm 0.2) \ 10^{-2}$

Previous Measurements for $D^0 \rightarrow K^0 K^0 \pi^+ \pi^-$:

 $(12.6 \pm 3.8 \pm 3.) \ 10^{-2}$

ARGUS (25 ev)

Conclusions

- Improved Measurements on D⁰ decays into multi K_s final states and first evidence for D⁰ -> $K_s K_s K\pi$ modes.
- For $D^0 \rightarrow K^0 \overline{K}^0$ decay mode, FOCUS result useful for a comparison with theoretical previsions.

Model	$\Gamma(D^0 \rightarrow K^0 \overline{K}^0) / \Gamma(all)$ (%)
BSW model	0
Resonant Intermediate State	0.00032
OPE	0.025 - 0.063
Non factorizable contribution [1]	0.13
Non factorizable contribution [2]	0.043 +/ 0.014
PDG (2003)	0.071 +/- 0.019
FOCUS Preliminary	0.096 +/- 0.018

[1] K.Terasaki, Phys. Rev. D59 114001(99)[2] J.O. Eeg, Phys. Rev. D64 034010(01)