

Quantum Loops in the Resonance Chiral Theory: The Vector Form Factor

> **Ignasi Rosell** IFIC, València (Spain) May 2004

1. Introduction

MOTIVATION

- Confinement: We do NOT know how to work with the \mathcal{L}_{QCD} at low energies \longrightarrow effective field theories
- At intermediate energies $(M_{\rho} \lesssim E \lesssim 2 \,\text{GeV})$ there is no natural expansion parameter \longrightarrow expansion in $1/N_C$
- The Effective Theory for QCD at intermediate energies which uses $1/N_C$ as a expansion parameter \longrightarrow Resonance Chiral Theory ($\mathbf{R}\chi\mathbf{T}$)

1. Introduction

MOTIVATION

- Confinement: We do NOT know how to work with the \mathcal{L}_{QCD} at low energies \longrightarrow effective field theories
- At intermediate energies $(M_{\rho} \lesssim E \lesssim 2 \,\text{GeV})$ there is no natural expansion parameter \longrightarrow expansion in $1/N_C$
- The Effective Theory for QCD at intermediate energies which uses $1/N_C$ as a expansion parameter \longrightarrow Resonance Chiral Theory ($\mathbf{R}\chi\mathbf{T}$)

PROBLEM!SOLUTIONThe renormalization is notA study of any function atclear: the theory has beenNLO is needed \rightarrow VFF ofused only at tree level.the pion.

EFFECTIVE FIELD THEORIES (EFT)

The only remnant of the high-energy dynamics are in the lowenergy couplings and in the symmetries of the EFT.

• Theoretical interpretation: integration of the heavy particles

$$e^{i\Gamma_{eff}[\Phi_l]} = \int [\mathrm{d}\Phi_h] \; e^{iS[\Phi_l,\Phi_h]}$$

• Example: the Fermi Theory of Weak Interactions

- The choice of the suitable degrees of freedom is fundamental.
- Interchanges with heavy particles \longrightarrow local operators with light particles.
- They can be worked as **renormalizables** if one stops at certain precision.

• The running of α_s drives naively to the confinement \rightarrow EFT's.

• The running of α_s drives naively to the confinement \rightarrow EFT's.

• Massless quark limit \longrightarrow chiral symmetry:

$$egin{array}{rcl} q_L &\longrightarrow & q_L{}' &= & g_L \, q_L \,, \ q_R &\longrightarrow & q_R{}' &= & g_R \, q_R \,, \end{array}$$

where $g_{L,R} \in SU(n_f)_{L,R}$. As the symmetry is global, one expects an influence into the hadronic spectroscopy:

 $\begin{cases} SU(3)_V \text{ Representations} \\ M_{\pi,K} \ll M_\rho \end{cases} \end{cases} \begin{cases} SCSB: \\ SU(3)_L \otimes SU(3)_R \to SU(3)_V \end{cases}$

• The running of α_s drives naively to the confinement $\rightarrow \text{EFT's.}$

• Massless quark limit \longrightarrow chiral symmetry:

$$egin{array}{rcl} q_L &\longrightarrow q_L{}' &= g_L q_L\,, \ q_R &\longrightarrow q_R{}' &= g_R q_R\,, \end{array}$$

where $g_{L,R} \in SU(n_f)_{L,R}$. As the symmetry is global, one expects an influence into the hadronic spectroscopy:

 $SU(3)_V \text{ Representations}$ $M_{\pi,K} \ll M_{\rho}$ SCSB: $SU(3)_L \otimes SU(3)_R \to SU(3)_V$

• The CCWZ formalism allows to obtain effective Lagrangians for SSB theories \longrightarrow an EFT with Goldstone bosons can be developed: χ PT.

• The running of α_s drives naively to the confinement $\rightarrow \text{EFT's.}$

• Massless quark limit \longrightarrow chiral symmetry:

$$egin{array}{rcl} q_L &\longrightarrow & q_L{}' &= & g_L \, q_L \,, \ q_R &\longrightarrow & q_R{}' &= & g_R \, q_R \,, \end{array}$$

where $g_{L,R} \in SU(n_f)_{L,R}$. As the symmetry is global, one expects an influence into the hadronic spectroscopy:

 $SU(3)_V \text{ Representations}$ $M_{\pi,K} \ll M_{\rho}$ SCSB: $SU(3)_L \otimes SU(3)_R \to SU(3)_V$

• The CCWZ formalism allows to obtain effective Lagrangians for SSB theories \longrightarrow an EFT with Goldstone bosons can be developed: χ PT.

• Although $\Lambda_{\chi} \sim 1$ GeV, χ PT only for regions $E \ll M_{\rho}$.

• The running of α_s drives naively to the confinement $\rightarrow \text{EFT's.}$

• Massless quark limit \longrightarrow chiral symmetry:

$$egin{array}{rcl} q_L &\longrightarrow & q_L{}' &= & g_L \, q_L \,, \ q_R &\longrightarrow & q_R{}' &= & g_R \, q_R \,, \end{array}$$

where $g_{L,R} \in SU(n_f)_{L,R}$. As the symmetry is global, one expects an influence into the hadronic spectroscopy:

 $\begin{cases} SU(3)_V \text{ Representations} \\ M_{\pi,K} \ll M_\rho \end{cases} \end{cases} \begin{cases} SCSB: \\ SU(3)_L \otimes SU(3)_R \to SU(3)_V \end{cases}$

• The CCWZ formalism allows to obtain effective Lagrangians for SSB theories \longrightarrow an EFT with Goldstone bosons can be developed: χ PT.

• Although $\Lambda_{\chi} \sim 1$ GeV, χ PT only for regions $E \ll M_{\rho}$.

• Organization in terms of increasing powers of momentum, E/Λ_{χ} .

• The running of α_s drives naively to the confinement $\rightarrow \text{EFT's.}$

• Massless quark limit \longrightarrow chiral symmetry:

$$egin{array}{rcl} q_L &\longrightarrow & q_L{}' &= & g_L \, q_L \,, \ q_R &\longrightarrow & q_R{}' &= & g_R \, q_R \,, \end{array}$$

where $g_{L,R} \in SU(n_f)_{L,R}$. As the symmetry is global, one expects an influence into the hadronic spectroscopy:

 $\begin{cases} SU(3)_V \text{ Representations} \\ M_{\pi,K} \ll M_\rho \end{cases} \end{cases} \begin{cases} SCSB: \\ SU(3)_L \otimes SU(3)_R \to SU(3)_V \end{cases}$

• The CCWZ formalism allows to obtain effective Lagrangians for SSB theories \longrightarrow an EFT with Goldstone bosons can be developed: χ PT.

• Although $\Lambda_{\chi} \sim 1$ GeV, χ PT only for regions $E \ll M_{\rho}$.

- Organization in terms of increasing powers of momentum, E/Λ_{χ} .
- With dimensional regularization the counterterms are in the Lagrangian.

THE $1/N_C$ EXPANSION

Which expansions can be used for QCD EFT's?

- $E \ll M_{\rho}: E/\Lambda_{\chi} \longrightarrow \chi PT$
- $M_{\rho} \lesssim E \lesssim 2 \,\text{GeV}$: ???

THE $1/N_C$ EXPANSION

Which expansions can be used for QCD EFT's?

- $E \ll M_{\rho}: E/\Lambda_{\chi} \longrightarrow \chi PT$
- $M_{\rho} \lesssim E \lesssim 2 \,\text{GeV}$: ???

 \hookrightarrow A SOLUTION: $1/N_C$ expansion

't Hooft proposed the QCD generalization to a gauge theory with N_C colours, waiting simplifications in the case of $N_C \to \infty$.

THE $1/N_C$ EXPANSION

Which expansions can be used for QCD EFT's?

- $E \ll M_{\rho}: E/\Lambda_{\chi} \longrightarrow \chi PT$
- $M_{\rho} \lesssim E \lesssim 2 \,\text{GeV}$: ???

\hookrightarrow A SOLUTION: $1/N_C$ expansion

't Hooft proposed the QCD generalization to a gauge theory with N_C colours, waiting simplifications in the case of $N_C \to \infty$.

- Main features in the limit $N_C \to \infty$
 - 1. Mesons and glue states are free and stable.
 - 2. The number of meson states is infinity.
 - 3. The hadronic physics can be studied trough an effective Lagrangian with mesons \longrightarrow EFT's.

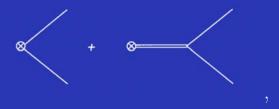
THE RESONANCE CHIRAL THEORY ($R\chi T$)

• Basic features

- 1. EFT for $E \sim M_R \ (M_{\rho} \lesssim E \lesssim 2 \,\text{GeV})$.
- 2. Expansion in powers of momentum does not work $\longrightarrow 1/N_C$ expansion.
- 3. Goldstone bosons and resonances as degrees of freedom:

 $\mathcal{L}_{R\chi T}(u, V, A, S, P) = \mathcal{L}_u(u) + \mathcal{L}_R(u, V, A, S, P).$

- 4. Construction of the Lagrangian \hat{a} la CCWZ, using the chiral symmetry.
- 5. The antisymmetric formalism is used for the massive spin-1 fields.
- 6. The matching with QCD bans the introduction of $\mathcal{L}_{\chi PT}$ local terms of $\mathcal{O}(p^4)$ or higher at LO in $\mathcal{L}_{R\chi T}$ and fixes the values of the couplings.


2. VFF in $R\chi T$ at NLO

[I. ROSELL, J.J. SANZ-CILLERO, A. PICH, in preparation]

• The VFF of the pion for the neutral current, $\mathcal{F}(q^2)$, is defined through the matrix element:

$$\langle \pi^+(p_1) \pi^-(p_2) | \left(rac{1}{2} \overline{u} \gamma_\mu u - rac{1}{2} \overline{d} \gamma_\mu d
ight) | 0
angle = \mathcal{F}(q^2) (p_1 - p_2)^\mu.$$

• The VFF at tree level has the contributions

which give the result

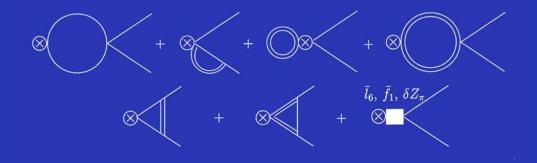
$$\mathcal{F}_{LO}(q^2) = 1 + \frac{F_V G_V}{F^2} \frac{q^2}{M_V^2 - q^2}.$$

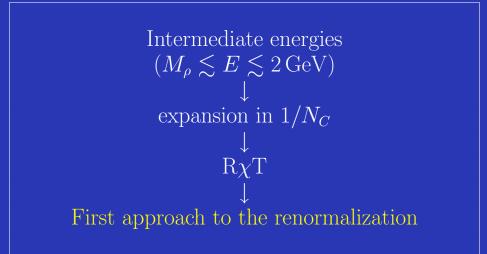
• In our work this observable is studied at NLO.

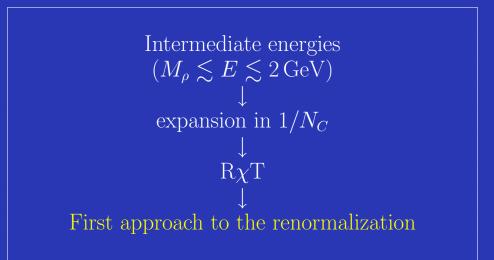
GREEN FUNCTIONS

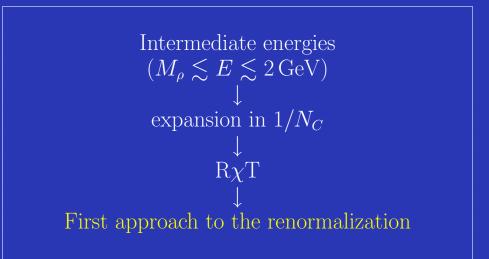
1. Pion self-energy

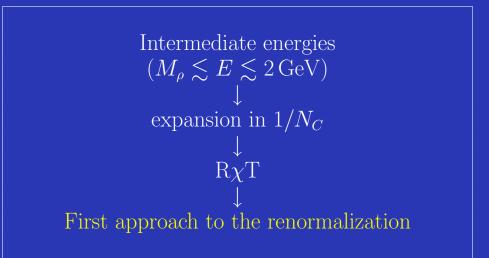
2. ρ self-energy

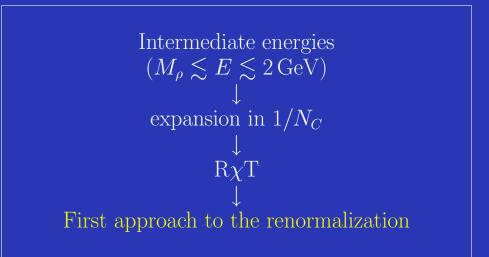

3. $\overline{q}\gamma^{\mu}q \rightarrow V_{\rho\sigma}$ vertex

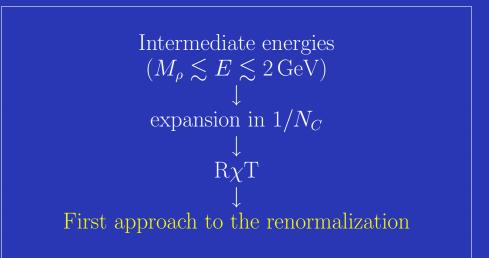





5. $\overline{q}\gamma^{\mu}q \to \pi\pi$ vertex




• Using the EOM, terms with resonances of $\mathcal{O}(p^4)$ are not needed for the VFF, at least out of the pole.


- Using the EOM, terms with resonances of $\mathcal{O}(p^4)$ are not needed for the VFF, at least out of the pole.
- Generalization? \longrightarrow only necessary for the NLO in $R\chi T$ terms with two or more resonances of $\mathcal{O}(p^2)$ + matching.

- Using the EOM, terms with resonances of $\mathcal{O}(p^4)$ are not needed for the VFF, at least out of the pole.
- Generalization? \longrightarrow only necessary for the NLO in $R\chi T$ terms with two or more resonances of $\mathcal{O}(p^2)$ + matching.
- χ PT decoupling from R χ T.

- Using the EOM, terms with resonances of $\mathcal{O}(p^4)$ are not needed for the VFF, at least out of the pole.
- Generalization? \longrightarrow only necessary for the NLO in $R\chi T$ terms with two or more resonances of $\mathcal{O}(p^2)$ + matching.
- χ PT decoupling from R χ T.
- Short-distance behaviour problem \longrightarrow we are working now on this item: introduction of new operators, effective resummation?

- Using the EOM, terms with resonances of $\mathcal{O}(p^4)$ are not needed for the VFF, at least out of the pole.
- Generalization? \longrightarrow only necessary for the NLO in $R\chi T$ terms with two or more resonances of $\mathcal{O}(p^2)$ + matching.
- χ PT decoupling from R χ T.
- Short-distance behaviour problem \longrightarrow we are working now on this item: introduction of new operators, effective resummation?
- Future work: functional integration \longrightarrow a fundamental step to work with $R\chi T$ at NLO.