Recent FOCUS results on charm mixing and CP violation

Luigi Moroni, INFN-Milano

Outline

Mixing

 Brief introduction on Mixing Phenomenology

$$x = \Delta M / \Gamma$$
 and $y = \Delta \Gamma / 2\Gamma$

- Theory predictions
- Experimental strategies and expected sensitivities
- Present experimental status
- Sensitivity to compete via y=τ(Kπ)/ τ(KK) -1

New FOCUS result on y

- Kπ & KK signals
- CP eigenstate lifetimes
- Impact of this result on the present experimental scenario

Search for CP violation

- New FOCUS limits
 Compare Dⁿ(D̄ⁿ) → K⁺K
 and D[±] → K⁺K⁻π[±]
- Summary & Conclusions

$$i\frac{\partial}{\partial t} \left(\frac{D}{D}\right) = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \left(\frac{D}{D}\right) \text{ where } H_{11} = M_{11} - i\frac{\Gamma_{11}}{2} \text{ etc...}$$

If H_{12} , $H_{21} \neq 0$, the D and \overline{D} are not mass eigenstates.

If *CP* conserved, $D_{1,2} = \frac{D \pm \overline{D}}{\sqrt{2}}$ are mass and *CP* eigenstates with $\Delta \Gamma$, $\Delta M \neq 0$

If
$$|x|, |y| << 1$$
:

$$A_{mix} \approx \frac{y + ix}{2} \times \Gamma t \times \exp\left(-\frac{\Gamma t}{2}\right)$$
 where $x = \frac{\Delta M}{\Gamma}$ and $y = \frac{\Delta \Gamma}{2\Gamma} \equiv \frac{\tau^+ - \tau^-}{\tau^+ + \tau^-}$

Measuring Mixing

In practice, one has to compare the transition rates to 2 particular CP - conjugate final states,

e.g.
$$\Gamma(D^0 \to \overline{f}) / \Gamma(D^0 \to f)$$

where the transition $D^0 \to \overline{f}$ is through mixing.

In D^0 hadronic decays, $D^0 \to \overline{f}$ can go through mixing as well as through a simple DCS process.

In this case:
$$\frac{dN_{D\to \overline{f}}}{dt} \propto \left| A_{mix} + \sqrt{R_D} e^{-i\delta} e^{-\Gamma t/2} \right|^2 \approx i.e. \quad \chi, \psi \stackrel{\delta}{\Omega} \chi', \psi'$$

$$\left(\left(\frac{x^2 + y^2}{2} \right) \frac{\Gamma^2 t^2}{2} + \sqrt{R_D} (-x \sin \delta + y \cos \delta) \Gamma t + R_D \right) \exp(-\Gamma t)$$

On the other hand, processes such a semileptonic decay have no R_D terms!

Theoretical "guidance"

From compilation of H.N.Nelson hep-ex/9908021

Triangles are SM x Squares are SM y

Circles are NSM x

Predictions encompass 15 orders magnitude for R_{mix} (but only 7 orders of x or y!)

Mixing Measurements

Pretend that
$$R_{\text{mix}} = \left(\frac{x^2 + y^2}{2}\right) = 0.05\%$$
.

How could one "see" it at 95% CL (2σ)?

One could observe $\approx 16~\text{D}^{**} \to \pi^{*}(K^{*}\mu^{*}\overline{\nu}^{*})$ decays over a background of 10 among $\approx 12000~\text{D}^{**} \to \pi^{*}(K^{*}\mu^{*}\overline{\nu}^{*})$ decays

If mixing is through $x (\Delta M)$

One could try to measure CP mass differences to 25μ eV

If mixing is through y $(\Delta\Gamma)$

One could measure the KK/K π lifetime to 1.6%

→ 4000 KK (background free) events.

NB: assuming K⁻π⁺ equal mix of CP + and CP

Or observe hadronic mixing interference (CLEO) with ~50 events...

CLEO enlivened this subject considerably...

Required sensitivity to compete with CLEO

CLEO is obtaining an 95% allowed y' range of

In FOCUS we would compare lifetime of KK to that of $K\pi$.

•The errors on $K\pi$ will be much smaller than KK

$$y = \frac{\tau(D \to K\pi)}{\tau(D \to KK)} - 1 \quad \to \sigma_y \approx \frac{\sigma(\tau_{KK})}{\tau_{KK}} \approx \frac{1}{\sqrt{N^*}}$$

CLEO's 95% y range implies $\sigma_v \approx 1.73\%$

$$\sigma_{y} \approx \frac{1}{\sqrt{N^{*}}} \rightarrow N^{*} = \frac{1}{0.0173^{2}}$$

 ≈ 3300 background free KK events

FOCUS has adequate statistics to do this!

Successor to E687. Designed to study charm particles produced by ~200 GeV photons using a fixed target spectrometer with upgraded Vertexing, Cerenkov, E+M Calorimetry, and Muon id capabilities. Includes groups from USA, Italy, Brazil, Mexico, Korea

D→KK signal for several cleanups

Focus mixing and CPV results

We illustrate a low and high l/σ detachment with tight kaonicity. Fits cover ~3.5 orders of magnitude and about 10 lifetimes. Fit quality is very good.

Backgrounds have a short as well as long component. Detachment dramatically reduces the background level at low detachment

Subtracted time evolution

This shows the background subtracted and (very slight) MC corrected KK and $K\pi$ yields versus t' for our "official" fit.

3 Wk \times 3 l/σ \times 2 options \times 2 bin

$$y_{CP} = 3.42 \pm 1.39 \pm 0.74 \%$$

Sample standard deviation of fit variants is ± 0.61

$$\tau(K\pi) = 409.4 \pm 1.34 \pm ??$$
 fs

Sample standard deviation of fit variants ± 0.3

Absolute lifetime systematics not shown until we analyze K3π etc

Do lifetimes

D⁰ lifetime update

Experiment	pub order	D° lifetime fs
E691	1	422 ± 8 ± 10
E687	2	413 ± 4 ± 3
E791	3	413 ± 3 ± 4
CLEO	4	408.5 ± 4.1 ± 3.5
FOCUS *Kπ only	5	409.4 ± 1.34 ± x*
Average of		409.6 ± 1.3
3 recent values		χ²=0.52 for 2

- Harry W. K. Cheung

Comparisons to CLEO and E791

The comparison to CLEO is only valid if one assumes a small strong phase difference δ

We have essentially the same sensitivity to the CLEO CP constrained fit but are getting the opposite sign!

$$y_{CP} = 3.42 \pm 1.39 \pm 0.74 \%$$

Previous Measurements

E791:
$$y_{CP} = (+0.8 \pm 2.9 \pm 1)\%$$

CLEO -5.8 % < y' < 1% (95% CL)

21

Phase ambiguity

We also show results under a 40° phase rotation for CLEO which is roughly the estimated maximum of the model of Falk, Nir & Petrov (99)

CLEO and FOCUS would be more consistent if $\delta > 90^{\circ}$...

but FOCUS has some overlap even with CLEO's most restrictive fit at $\delta = 40^{\circ}$.

Search for CP asymmetry in charm decay

Ideally we would measure:

$$\alpha_{\text{CP}}(D^{+} \to K^{-}K^{+}\pi^{+}) = \frac{\Gamma(D^{+} \to K^{-}K^{+}\pi^{+}) - \Gamma(D^{-} \to K^{-}K^{+}\pi^{-})}{\Gamma(D^{+} \to K^{-}K^{+}\pi^{+}) + \Gamma(D^{-} \to K^{-}K^{+}\pi^{-})}$$
or: $\alpha_{\text{CP}}(D^{o} \to K^{-}K^{+}) = \frac{\Gamma(D^{0} \to K^{-}K^{+}) - \Gamma(\bar{D}^{o} \to K^{-}K^{+})}{\Gamma(D^{0} \to K^{-}K^{+}) + \Gamma(\bar{D}^{o} \to K^{-}K^{+})}$

- In the first case, would search for direct CP violation:
 need for CS decays
- In the latter case, Do asymmetry is complicated by a direct as well mixed contribution.

Buccella et al predict state specific asymmetries in the range of $0.002 \rightarrow 0.14 \%$

Tagging and asymmetry ratios

We ratio to a Cabibbo allowed reference states to correct for known production asymmetries: ~ -3% for photoproduced mesons.

$$A_{CP} = \frac{\eta(D) - \eta(\overline{D})}{\eta(D) + \eta(\overline{D})}$$

For the D⁺ we use:
$$\eta(D) = \frac{N(D^+ \to K^- K^+ \pi^+)}{N(D^+ \to K^- \pi^+ \pi^+)}$$

For the D^o we use: $\eta(D) = \frac{N(D^0 \to K^- K^+)}{N(D^0 \to K^- \pi^+)}$

For the D°, we determine the charm by tagging the charge of the batchelor pion from D*+ \rightarrow $D^o\pi^+$

CP violation search $(D \rightarrow KK)$

CP violation search ($D^+ \rightarrow KK\pi$)

Focus mixing and CPV results

CP asymmetry results

Decay mode	FOCUS	Previous best (E791)
$D^+ \rightarrow K^- K^+ \pi^+$	$+0.006 \pm 0.011 \pm 0.005$	-0.014 ± 0.029
$D^0 \rightarrow K^-K^+$	$-0.001 \pm 0.022 \pm 0.015$	$-0.010 \pm 0.049 \pm 0.012$
$D^{0} \rightarrow \pi^{+}\pi^{-}$	$+0.048 \pm 0.039 \pm 0.025$	$-0.049 \pm 0.078 \pm 0.030$

- No evidence for CP violation.
- •Our limits on $K^+K^-\pi^{\pm}$ are much better than K^+K^-
 - •Need to use tagged Do sample which cuts our sample by 80%
- Our limits are ~2→3 × more stringent than E791 reflecting our larger statistics.

Summary

Deaymak	ROUS	Previous test (E791)
<i>D</i> → <i>K K</i> π [†]	+0.006±0.011±0.005	0014±0029
$D^0 \rightarrow K K$	-0001 ±0022 ±0015	-0.010±0.049±0.012
$D' \rightarrow \pi' \pi$	+0.048±0.039±0.025	0.049±0.078±0.030

$$A_{CP} = \frac{\eta(D) - \eta(\bar{D})}{\eta(D) + \eta(\bar{D})}$$

3 principal results presented

•A value for KK and $K\pi$ lifetime ratio

$$y_{CP} = \frac{\tau(D \to K\pi)}{\tau(D \to KK)} - 1$$

- A new value for Kπ lifetime but without full systematics
- Much more stringent CPV asym limits

20 Focus mixing and CPV results