Chiral Perturbation Theory and the $1/N_c$ Expansion

R. Kaiser, ITP Bern, Frascati 5/00

- The large N_c limit of QCD
- ullet The effective Lagrangian and the η'
- The δ expansion (as opposed to the p expansion)
- Kaplan-Manohar transformation
- Results
- Summary and outlook

Work done in collaboration with H. Leutwyler

The large N_c limit of QCD

• $N_c \to \infty$, $g^2 N_c$ fixed

- G.'t Hooft, 74
- As a consequence the U(1)_A anomaly disappears in this limit
- Spontaneous symmetry breakdown
 U(3)_L × U(3)_R → U(3)_V
- Nonet of Goldstone bosons: π, K, η, η' E.Witten, 79
- ullet Effective prescription : need to include the degree of freedom of the η'
- Perturbative analysis yields counting rules for correlation functions
 The η' mass is a special case

Effective Lagrangian

- Leading order (~ current algebra):
 - take Lagrangian of SU(3):
 U(x) ∈ SU(3) → U(x) ∈ U(3)
 - $\det U = e^{i\psi}$, ψ describes the η'
 - add a mass term for the ψ field
 - chiral symmetry: $\psi^2 \rightarrow (\psi + \theta)^2$

$$\mathcal{L} = \frac{F^2}{4} \langle D_{\mu} U^{\dagger} D^{\mu} U + U^{\dagger} \chi + \chi^{\dagger} U \rangle - \frac{\tau_{GD}}{2} (\psi + \theta)^2$$

Di Vecchia & al, Rosenzweig & al, Witten, 80

• $\theta(x)$: source field for the winding number density $\omega(x)$

$$\omega = \frac{1}{16\pi^2} \operatorname{tr}_c G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- η' mass $(m_q = 0)$: $M_{\eta'}^2 = 6 \tau_{GD}/F^2$
- $F^2 = O(N_c)$, $\tau_{GD} = O(1)$: $M_{\eta'}^2 = O(1/N_c)$

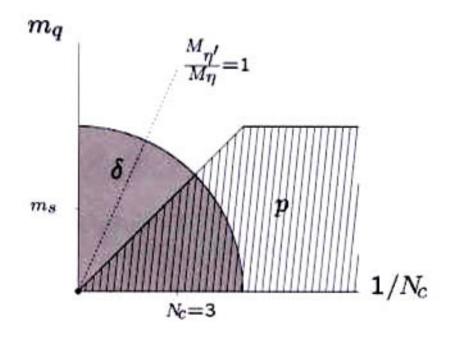
Effective Lagrangian, cont.

Leading order

$$\mathcal{L} = \frac{F^2}{4} \langle D_{\mu} U^{\dagger} D^{\mu} U + U^{\dagger} \chi + \chi^{\dagger} U \rangle - \frac{\tau_{GD}}{2} (\psi + \theta)^2$$

- Low energy constants are independent of the light quark masses m_u , m_d , m_s
- Low energy constants do know about N_c : $F^2 = O(N_c)$, B = O(1), $\tau_{GD} = O(1)$, ...
- Introduce counting parameter δ : $p = O(\sqrt{\delta}), m = O(\delta), 1/N_c = O(\delta)$
- Leading order Lagrangian = O(1)
- $\mathcal{L}_{eff} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \dots$

Domain of validity



- Equation of Motion for the η' $(\Box + M_{\eta'}^2)\psi(x) = f_{\rm ext}(x) + \dots$
- $N_c=\infty$: the η' is massless
- $p^2 \ll M_{\eta'}^2$: $\psi(x) = M_{\eta'}^{-2} f_{\text{ext}}(x) + \dots$
- p^2 , $M_{\eta'}^2$ both small : δ expansion

δ expansion

- Chiral symmetry
- Large N_c counting rules

$$\langle 0|Tj_1\dots j_n\,\omega_1\dots\omega_m|0\rangle=O(N_c^{2-l-m})$$
 $j_i=\bar q\,\Gamma_i\,q,\ l=\#$ of quark loops In particular: correlation functions involving ω are suppressed

- Translates into counting rules for the effective coupling constants...
 There are, however, ambiguities ↔ freedom in choice of the effective variables
- Nevertheless, it can be shown that the input is sufficient for the construction of an effective Lagrangian which
 - (a) describes QCD correctly and
 - (b) has the desired properties, namely...

R.K. & H.Leutwyler, to appear

δ expansion, cont.

- To any given order in δ only a finite number of terms is needed
- The coupling constants in the Lagrangian do obey the 'canonical counting rules' of large N_c J.Gasser & H.Leutwyler, 1985
- In particular, the coupling constants c_n are bounded, $c_n \leq O(N_c)$, $\forall n$
- The Lagrangian of order δ^n is a polynomial of degree n+2 in θ
- Note that it is easy to find a Lagrangian which does not have these properties: a suitable redefinition of the effective fields, ψ → ψ + f(ψ + θ), f = O(N_c²), e.g., generates one

Kaplan-Manohar transformations

 SU(3) effective Lagrangian up to and including O(p⁴) is invariant under

$$m_u o m_u+\lambda\,m_d\,m_s$$
, cyclic $L_8 o L_8+\lambda F^2/(16B)$, L_6,L_7 similar D.Kaplan & A.Manohar, 86

In order to preserve the U(1)-transformation properties of m we must include θ:

$$m \to m + \lambda e^{-i\theta} m^{\dagger - 1} \det m^{\dagger}$$

This implies the change

$$\langle U^{\dagger} \chi \rangle \rightarrow \langle U^{\dagger} \chi \rangle + \frac{\lambda}{4B} e^{-i(\psi + \theta)} \left(\langle \chi^{\dagger} U \rangle^{2} - \langle \chi^{\dagger} U \chi^{\dagger} U \rangle \right)$$

 Introduces a non-polynomial dependence on θ
 Conclusion: \ must vanish to all orders

Conclusion: λ must vanish to all orders in $1/N_c$

Summary and outlook

- The occurrence of a new low energy scale $(M_{\eta'})$ leads to a more complicated low energy structure
- The formulation of the effective theory at large N_c involves a simultaneous expansion in powers of p, m_q and $1/N_c$: δ expansion
- The Kaplan-Manohar transformation is forbidden in this framework
- Promising results at order δ extension to order δ^2 (loops)