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Motivations

At low energies (E < 1 GeV) QCD isin ahighly

non—perturbative regime: this makes very difficult
any description of the hadronic world in terms of
partonic degrees of freedom.

The hadronic spectrum is very simple at low
energies. only 8 pseudoscalar fields (1T, K, ).

The interactions among the pseudoscalar mesons
become weak in thelimit E — 0.

Reasonable to expect that QCD can be treated
perturbatively even at low energies with a suitable
choice of degrees of freedom.

(g, G) (, K, n)
pQCD CHPT
pert. at high E pert. at low E
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Effective Quantum Field Theories

CHPT is atypical example of EQFT, i.e. of a QFT
which has an intrinsic limitation in the (energy)

range of validity (E < N).

All QFT we know can be considered as EQFT, i.e.
as low energy approximations of "more
fundamental” theories.

\

Basic principle of EQFT:




G. Isidori Introduction to CHPT — | 5

Do we need renormalizability (in the "classical"
sense) within EQFT ?

Renormalizable theories are a particular subset of EQFT with

e the virtue of being very predictive (only a finite set of
couplings need independently of the energy range)

e the disadvantage of non containing explicit indications
about their validity range

General consistency conditions for EOFT:

The operators needed to regularize the theory are expanded in a
power series

ofor any n > O there is only a finite set of operators

contributing at O(E n) to the physical amplitudes

o the coefficients of these operators, C i(n), scale according to

c™Or e ~ own)

Finite set of couplings needed to describe the physicsat E < A
with arbitrary precision
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Chiral Symmetry

19 =" {iD g — =G"'G, + L

QCD 4 uv heavy quarks

Global symmetry:  SU (N ) XxSU (N ). xU (1), xU (1),

N

f

U(1), = broken the quantum level by the axial anomaly

A

U(1), = realized

SJ(N,), xSJ(N,), = not manifest in the hadronic spectrum
(only an approximate 3J (3), isredized)

(well motivated) assumptions of CHPT (N .=3)

G isspontaneously brokeninto H=SU(3) .
(11, K, n — Goldstone bosons of G/H (correct quantum
numbers, vanishing interactionsfor E — 0)

the explicit breaking terms O(m,) can be treated as small
perturbations around the chiral limit

M2/M?~0.03 M;/M°>~0.4
™ p p
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We must construct the most general L(P,W)

Invariant under G and add to it the breaking terms
(transforming linearly under G)

o ® = Goldstone boson fields parametrizing G/H
[ ® transform non linearly under G |

o W = heavy (non—dynamical) matters fields

(nucleons, vector mesons, etc...)
[ W transform linearly only under H ]

S. Weinberg, Phys. Rev. Lett. 18 (67) 188

General procedure to construct a non—linear
realization of a spontaneously broken symmetry

S. Coleman, J. Wess, B. Zumino,
Phys. Rev. D177 (69) 2239

C.G. Cdlan, S. Coleman, J. Wess, B. Zumino,
Phys. Rev. D177 (69) 2239
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Non-Ilinear realizations

V. = generatorsof H [Vi,Vj]~Vk
A = remaining generatorsof G [A,A]~V,  [AV |~A
VY geG can bewritten as g=¢"¢&""

e’?

h,eH @y —hyphy,t  (ex.of linear realization
= adj. representation)

E-E (.0,  woe T ye Y

provide a non-linear realization of G which
becomes linear if restricted to the subgroup H

Proof

) g:§—& 0,18 —=&" 0,0,:8-E7
g:y—y gy oyt 0,0, y—oyT

heH he =(heé nh’=e¢"h,

b) A Ap—1 1
e-he™hyt  w-ohwh
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Specifying the discussion to the chiral group:

gLe}g.A:eg'.Aen'.v

g.e Fh=et e

parity transformation

u(g)=e"
h(g.g)=€""

basic tools to construct objects transforming

linearly under G

U=u’-g Ug,
U+=(u+)2—>gRU+g[1
Upu—g, (Uupu)gy
upu'—g (upu)gy

|dentification of & with the pseudoscalar meson field:

u(g)=¢€"**'* | F = unknown dimensional coupling (~ E)

theidentification is not unique, but all possible formulations leads
to equivaent physical results
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no/\/a-l-n/\/é T K™
¢ = ud —no/\/a—l—n/\/g K°
K- KO —nV2/3

If we do not include heavy matter fields and symmetry
breaking terms, the first non—trivial operator invariant
under G arises at O(p?) and is unique:

T 61? tr ([0, . b1l b,bl) + .

S

Al i’ -t ) =( P — p+)2/|:2

10
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L owest—order Lagrangian

How to introduce the symmetry—breaking terms ?

Systematic approach by means of external (non—dynamical

Sources)
J. Gasser, H. Leutwyler, Ann. Phys, 158 (84) 142,

Nucl. Phys. B250 (85) 465

LQCD(I”‘,r”‘,s, p)= Lg)éDJquy“lquJquy“ r.dq
—Q.(stip)g,—q (s—ip)a,

Loco (17, 1",s, p) isstill invariant under G if

|, - gl g’ + i(9,0,9,")
r, = Oaf ,On +  i(9:0,9:)
(s—ip) — g (s—ip)gn
(s+ip) — gu(s+ip)g, I



G. Isidori
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external fields:
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guark mass terms recovered for

s=diag(m,,m ,m,)

p=0

couplingsto external W, Z or photon fields obtained for

r=—eQA + O(Z)

12

| ——eQA — € (T.W'+hc) + O(Z
=—eQA &Sm(gw)( W' +he) + O(Z)

_ NN

|2 0 o0 0 Vy Vi

Q :é O -1 O T.=10

0 0 -1 0 /0 0

/’/
CKM
0(z,)

For later convenience we also define

X=2B(s+ip)

B = new unknown dimensionadl
coupling (~ E)
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The lowest-order chiral realizationof L. (1*,r",s, p)
ISgiven by:

Completely determined DU=0 U+iUl —ir U
in terms of two couplings: g g S
F&B

Power—counting rules for the external fields:

| r ~ 0O natural consequence of local
’ (P} invariance (D U ~O(p) )

~ O(p?) necessary if wewant M2 ~ O(p?)

unique expansion in terms of masses and
momenta of the pseudoscalar mesons. well

justified a posteriori but not necessarily the
most general case.

L?(1*,r",s,p) ~ O(p?)
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Determination of F & B

F can be determined by the pion (kaon) decay constant
measured from m—1v, (K—1v))

0 Loeo (1)
o(l ).

u’)

= q.y"'q}

higher order terms responsible for the
difference between F, and F
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Similarly, by comparing the vacuum expectation values
of the scalar currents, it follows that:

(0lgglo) = —BF?

In practice B always appears multiplied by the quark
masses and this product can easily be determined in
terms of the pseudoscalar meson masses:

M2 = M% = B(m,+m)
2
M.. = B(m+m)
2
M., = B(m+m,)
Mjs = B(4m+m,+m )/3 Octet component

of the n meson

1 parameter—free prediction: 3M%=4M;—M’

(Gell-Mann—Okubo mass formula)

Gell-Mann—Okub
Mns( ann—Oku 0):567MeV Mn(eXp)=547|\/|eV

good a posteriori check of the assumption x ~ O( p®)
i.e. that O(m{) corrections are small
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Quark massratios & isospin—breaking

Using the relations

sy somy
M. = B(m+m,) + OLmé)/ interactions
szz&ﬂﬁmgyﬁgﬁﬁ(Xﬁ)

M2 = B(m+m) + A, + o(m’)

we cannot determine the absolute values of quark masses
(B is unknown) but we can determine their ratios with
reasonable accuracy:

: = T T = 022+0.07 = 029
m,+m M~
2mS (MK+_MW+)+(MiO_Mf{O)
m,+m MZ,

These results indicate large isospin—breaking effects and
huge SU(3) violations in the mass terms of the QCD
lagrangian.

16
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Why these effects are not manifest in most of the
hadronic spectrum ?

p(938.3) n(939.6) A(1116)
p(770) w(782) K *(892)

Light—quark masses are small with respect to the
scale of chiral—symmetry breaking.

The extremely accurate SU(2) isospin symmetry of the hadronic
world is an "accidental” consequence of the smallness of u and
d masses !

A~ 10° MeV

m ~ 10° MeV
m,,m, ~ 100 MeV

A posteriori confirmation that the explicit
chiral—symmetry breaking terms can be treated
as small perturbations around the chiral limit

17
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Explicit example of a tree—level process

K'->mnlev
e the W boson can
e’ be considered as an
W < external field from
.\l\‘\'\l\r the point of view
< N Vo of QCD (or CHPT)
0
n eV B
Iu—> — Wu531
¢§§n9w
2 i F° +
LY = tr(1*0,U"U)
ieF° V" W (5. UU)
= — + ...
2y2sn9,, ! N
eV’
= - — W (6 K-8 K'rt) + ...
4sn9,, g g
GV
AK —nr'e"y)? = Fz (pe+p),ulp,)y" (1-ys)v(p,)

A(K—-2mlv,) o O(p’)

18



