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Lecture n. 1   

(Motivations and lowest−order lagrangians)

Motivations

Effective Quantum Field Theories

Chiral Symmetry

Non−linear realizations

Lowest−order (strong) Lagrangian

Determination of F & B

Quark mass ratios & isospin breaking

Example of a tree−level process (K→πlν)



Motivations 

At low energies (E « 1 GeV) QCD is in a highly 
non−perturbative regime: this makes very difficult 
any description of the hadronic world in terms of 
partonic degrees of freedom. 

The hadronic spectrum is very simple at low 
energies: only 8 pseudoscalar fields (π, Κ, η).

The interactions among the pseudoscalar mesons 
become weak in the limit E → 0.

Reasonable to expect that QCD can be treated 
perturbatively even at low energies with a suitable 
choice of degrees of freedom. 

(q, G)

pQCD 

pert. at high E

(π, Κ, η)

CHPT

pert. at low E
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CHPT is a typical example of EQFT, i.e. of a QFT 
which has an intrinsic limitation in the (energy) 
range of validity (E < Λ). 

All QFT we know can be considered as EQFT, i.e. 
as low energy approximations of "more 
fundamental" theories. 

Basic principle of EQFT:
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Effective Quantum Field Theories 

Only few degrees of freedoms are 
relevant in a given energy range: the 
heavy ones can be integrated out.



Do we need renormalizability (in the "classical" 
sense) within EQFT ?

Renormalizable theories are a particular subset of EQFT with 

� the virtue of being very predictive (only a finite set of 
couplings need  independently of the energy range)

� the disadvantage of non containing explicit indications 
about their validity range

General consistency conditions for EQFT:

The operators needed to regularize the theory are expanded in a 
power series

 
� for any n ≥  0 there is only a finite set of operators 

contributing at  O(E  ) to the physical amplitudes

� the coefficients of these operators,  C    , scale according to 
    

 n

(n)
i

k C       / (n+k)
i  C     ∼  O(1/Λ  )  (n)

 j

Finite set of couplings needed to describe the physics at E < Λ
with arbitrary precision
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L
QCD

0 =∑i=0

N f

q̄i iDµqi 	 1

4
GµνGµν + L

heavy quarks

Global symmetry: SU N
f L

×SU N
f R

×U 1
V
×U 1

A

 = light quarksN f


  broken the quantum level by the axial anomaly


  realized

   
  not manifest in the hadronic spectrum
           (only an approximate              is realized)

U 1 A

U 1 V

SU N f L×SU N f R

SU 3 V[chiral group G]

(well motivated) assumptions of CHPT  (            )

 G  is spontaneously broken into 
   (π, Κ, η)  → Goldstone bosons of          (correct quantum  
                         numbers, vanishing interactions for E → 0)

the explicit breaking terms              can be treated as small 
perturbations around the chiral limit  

 

N f=3

H=SU 3 L+R

G ⁄H

O mq

M π
2 ⁄M ρ

2∼0.03 M K

2 ⁄M ρ
2∼0.4
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Chiral Symmetry 



We must construct the most general L(Φ,Ψ)
invariant under G  and add to it the breaking terms 
(transforming linearly under G) 

�  Φ = Goldstone boson fields parametrizing G/H 
            [ Φ transform non linearly under G ]

�  Ψ = heavy (non−dynamical) matters fields
          (nucleons, vector mesons, etc...)
            [ Ψ transform linearly only under H ]

General procedure to construct a non−linear 
realization of a spontaneously broken symmetry
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S. Coleman, J. Wess, B. Zumino, 
Phys. Rev. D177 (69) 2239

C.G. Callan, S. Coleman, J. Wess, B. Zumino, 
Phys. Rev. D177 (69) 2239 

S. Weinberg, Phys. Rev. Lett. 18 (67) 188 
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Non−linear realizations

=  generators ofV i H V i,V j ∼V k

=  remaining generators of Ai G Ai ,Aj ∼V k Ai ,V j ∼Ak

∀g∈G g=eξ⋅Aeη⋅Vcan be written as

g 0 ∈G g 0 e ξ⋅A= e
ξ ’ ξ , g 0 ⋅A

e
η ’ ξ , g 0 ⋅V

h 0∈H ψ → h 0 ψ h 0
	1 (ex. of linear realization 

    
 adj.  representation)

Proof [exercise n.1]:

g:ξ→ξ’ g1:ξ’ →ξ’’ g1 g0 :ξ→ξ’’

g:ψ→ψ’ g1:ψ’ →ψ’’ g1 g0:ψ→ψ’’
a)

h0∈H h0 eξ⋅A= h0eξ⋅Ah0
	1 h0=eξ’⋅Ah0

eξ⋅A→h0eξ⋅Ah0
	1 ψ→h0ψh0

	1
b)

provide a non−linear  realization of G  which 
becomes linear if restricted to the subgroup H

ξ→ξ ’ ξ , g 0 ψ→e
η ’ ξ , g

0
⋅V
ψe

	η ’ ξ , g
0
⋅V
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basic tools to construct objects transforming
linearly under G 

Specifying the discussion to the chiral group:

gL eξ⋅A=eξ’⋅Aeη’⋅V

gRe	ξ⋅A=e	ξ’⋅Aeη’⋅V
parity transformation

u ξ =eξ⋅A u ξ →gL u ξ h	1 g,ξ =h g,ξ u ξ gR
	1

h g,ξ =eη’⋅V u ξ +→gL u ξ +h	1 g,ξ =h g,ξ u ξ +gR
	1

U=u2→gL U gR
	1

U+= u+ 2→gRU+ gL
	1

uψu→gL uψu gR
	1

uψu+→gL uψu+ gR
	1

�

Identification of ξ  with the pseudoscalar meson field:

F = unknown dimensional coupling (∼ E )

parity transformation

the identification is not unique, but all possible formulations leads 
to equivalent physical results 

u ξ =e i 2φ ⁄F
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φ =
π0⁄ 2+η⁄ 6 π+ K+

π	 	π0 ⁄ 2+η⁄ 6 K0

K	 K̄ 0 	η 2⁄3

If we do not include heavy matter fields and symmetry 
breaking terms, the first non−trivial operator invariant 
under G arises at O(p  ) and is unique:    2

L 0
2 = F2

4
tr ∂µU+∂µU + O p4

Coupling fixed to 
reproduce the 
kinetic term

= 1

2
tr ∂µφ∂

µφ

+ 1

6F2
tr ∂µφ,φ ∂µφ,φ + …

∞ series of interactions terms 
ruled by a single unknown 
coupling 

[exercise n.2]: show that A π+π0 →π+π0 = p+
, 	p+

2⁄F2
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How to introduce the symmetry−breaking terms ?

Systematic approach by means of external (non−dynamical 
sources) 

L
QCD

lµ , rµ , s , p =L
QCD

0 +q̄
L
γµ lµq

L
+q̄

R
γµ rµq

R

	q̄
R

s+ip q
L
	q̄

L
s	ip q

R

is still invariant under G ifL
QCD

lµ , rµ , s , p

lµ → gL lµ gL
	1 + i gL∂µ gL

	1

rµ → gR rµ gR
	1 + i gR∂µ gR

	1

s	ip → gL s	ip gR
	1

s+ip → gR s+ip gL

	1

Needed if we want to promote 
G  (or some of its subgroups) 
to a local symmetry 

Lowest−order Lagrangian

J. Gasser, H. Leutwyler, Ann. Phys, 158 (84) 142; 
Nucl. Phys. B250 (85) 465 



 quark mass terms recovered for

  

 couplings to external W, Z  or photon fields obtained for
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Some of the advantages obtained by introducing the 
external fields:

  
s=diag m

u
,m

d
,m

s
p=0

rµ=	e Q Aµ + O Zµ

lµ=	e Q Aµ 	 e

2 sin ϑ
W

T+W µ
++h.c. + O Zµ

Q = 1

3

2 0 0
0 	1 0
0 0 	1

T+=
0 V ud V us

0 0 0
0 0 0

CKM matrix elements

For later convenience we also define

B = new unknown dimensional 
       coupling (∼ E )

χ=2 B s+ ip   

[exercise n.3]: compute 
explicitly the              terms O Z µ
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L 2 lµ ,rµ , s , p = F2

4
tr DµU+ DµU+χ+U+U+χ

DµU=∂µU+i U lµ	i rµU

The lowest−order chiral realization of
is given by:

L
QCD

lµ , rµ , s , p

Completely determined 
in  terms  of  two couplings: 

F & B

Power−counting rules for the external fields: 

lµ , rµ ∼ O p natural consequence of local 
invariance  (                         )DµU ∼O p

χ , χ+ ∼ O p2 necessary if we want M π
2 ∼ O p2

unique expansion in terms of masses and 
momenta of the pseudoscalar mesons: well 
justified a posteriori but not necessarily the 
most general case.

L 2 lµ , rµ , s , p ∼ O p2
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F can be determined by the pion (kaon) decay constant

   measured from

∂ LQCD lµ

∂ lµ ij

= q̄L
i γµ qL

j

Determination of F & B

π→ l ν
l

K → l ν
l

∂ L 2 φ ; lµ

∂ lµ ij

= i F 2

2
DµU+U ji = F

2
Dµ φ ji+O φ2

 

0 ūLγ
µ d L π

	 p  = 	 i

2
Fπ pµ Fπ = 93

F K ⁄Fπ∼1.2

MeV

Fπ=F 1+O m
q

higher order terms responsible for the 
difference between        and    F K Fπ
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Similarly, by comparing the vacuum expectation values 
of the scalar currents, it follows that:

 

0 q̄ q 0 = 	B F 2

M
π+

2 = M
π0

2 = B md+mu

M
K+

2 = B ms+mu

M
K 0

2 = B ms+md

M
η8

2 = B 4ms+md+mu ⁄3

in practice B  always appears multiplied by the quark 
masses and this product can easily be determined in 
terms of the pseudoscalar meson masses: 

1 parameter−free prediction: 3 M
η8

2 =4 M K

2 	Mπ
2

Octet component 
of the η meson

(Gell−Mann−Okubo mass formula)

good a posteriori check of the assumption 
i.e. that             corrections are small  

(Gell−Mann−Okubo) M
η8 = 567 MeV  

                         (exp) M η = 547 MeV  

χ ∼ O p2

O m
q

2
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Quark mass ratios & isospin−breaking

Using the relations

we cannot determine the absolute values of quark masses 
(B  is unknown) but we can determine their ratios with 
reasonable accuracy:

correction due to 
electromagnetic 
interactions

M
π0

2 = B md+mu + O mq

2

M
K 0

2 = B ms+md + O mq
2

M
π+

2 = B md+mu + ∆E. M. + O mq
2

M
K+

2 = B ms+mu + ∆E. M. + O mq
2

md	mu

md+mu

=
M

K 0	M K+ 	 M
π0

2 	M
π+

2

M
π0

2
= 0.22+0.07 = 0.29

2ms

md+mu

=
M

K+	M
π+ + M

K 0

2 	M
π0

2

M
π0

2
= 24.9

These results indicate large isospin−breaking  effects and 
huge SU(3) violations  in the mass terms of the QCD 
lagrangian.
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p 938.3 n 939.6 Λ 1116

ρ 770 ω 782 K ∗ 892

Why these effects are not manifest in most of the 
hadronic spectrum ? 

Light−quark masses are small with respect to the 
scale of chiral−symmetry breaking.

The extremely accurate SU(2) isospin symmetry of the hadronic 
world  is an "accidental" consequence of the smallness of u and 
d masses !

Λχ ∼ 103

m
s
∼ 102

m
d
,m

u
∼ 101

MeV

MeV

MeV

A posteriori confirmation that the explicit 
chiral−symmetry breaking terms can be treated 
as small perturbations around the chiral limit 
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Explicit example of a tree−level process

W
νe

 e +

K

π

 +

0

K+→π0 e+νe the W boson can 
be considered as an
external field from
the point of view
of QCD (or CHPT)

L1	lµ

2 = iF2

2
tr lµ∂µU+U

= 	
i eF2V us

∗

2 2sinϑW

Wµ ∂µU+U 13 + …

= 	
i eV us

∗

4sinϑW

Wµ ∂µπ
0 K+	∂µK+π0 + …

lµ→ 	
eV us

∗

2sinϑW

Wµ
	δ31

A K+→π0 e+νe

2 =
iGFV us

∗

2
pK+pπ µ ū pν γµ 1	γ5 v pe

[exercise n.4]: evaluate                          atA K→2πlνl O p2


