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Outline of Lecture 3

e Dispersion relation for the scalar form factor of the pion

e Chiral counting on the dispersion relation

e Going beyond one loop CHPT with dispersion relations

e Contribution of resonances to the dispersive integrals

e Summary and conclusions of lectures 2 and 3
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Dispersion relation for I'(¢)

For t > 4M? ImT'(t) # 0. T'(t) is analytic everywhere else in

the complex t plane, and obeys the following dispersion relation:
_ t2 [ dt'ImT(¢
L'(t) =1+ bt 4+ — (t) :

T 4A4% t2 t—t

where T'(t) = T'(¢)/T'(0).

Unitarity implies [o(t) = /1 — 4M2 /1]

Im T'(¢) o ()T (£)¢2" (t) = T(t)e 0 sin &°

= |I'(t)|sin 58
where t8 is the S—wave, isospin zero amplitude of w7 scattering.
Strictly speaking, the above unitarity relations are valid only for

t < 16M72r. To a good approximation, however, they hold up to
the K K threshold.
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Chiral counting on the dispersion relation

0(t) ~ 1400
b ~ O(1) (1+0(M§))

5 ~ 00 (1+00")

O O

There are two O(p?) correction to I':

1. O(1) contribution to b;
2. the dispersive integral containing the O(p2) phase (58.

Notice that the latter is fixed by unitarity and analyticity.

Are these respected by the one loop calculation?
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Dispersion relation and one—loop CHPT

The full one—loop expression of I'(t) reads as follows:

_ t _ 2t — M? _
I't) =14+ ——(ly, — 1 —— T J(t
() +167T2F7?(4 )+ 2F2 (t)
where . (t) — 1
— o' —_
J(t) = t)lIn —— + 2
(t) 1672 U()na(t)—l—1+ ]

To prove that unitarity and analyticity are respected at this order
is sufficient to add:

2t — M2
5o(t) = U(t)m + O(p")
Ft) = t /°° dt' o(t')
1672 Jau2 ¥t —t
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Hints

1. Subtract J(t) once more:

_ t t? /00 dt' o(t)
4

J(t) =
1) =56 T 16 M2 21—t

2. Trick to pull out a linear term from the dispersive integral:

o dt' t'o(t > dt' o(t’ o dt’
/ ,2,()275/ 72,()+/ 2o (1)
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Exact solution of the dispersion relation

Mathematical problem:

1. F(t) is an analytic function of ¢ in the whole complex plane,
with the exception of a cut for 4M? < t < oo;

2. approaching the real axis from above e~ F(¢) is real on
the real axis, where §(¢t) is a known function.

Omneés ('58) found an exact solution to this mathematical
problem:

F(t) = P(t)Q(t) = P(t) exp {3 / " e o) } ,

T Jam2 't —t

where P(t) is a generic polynomial. P(t) can only be constrained
by the behaviour of the function F'(t) at infinity.
Q(t) is called the Omnes function.
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Combining CHPT and the Omnes representation

At order p* we have:

@

t [ dt' s@ ¢
er() = 1462+ AP @), AP (r) :—/ .

/Y 4A4% t! t—t

It is easy to imagine how to improve the above representation. A
few proposals:

J

rot) = (1 4 b@4)ed?®
\

() = (1 4 b@)ed O
J

T7(t) = (1 4 b@t)ephys®

Which one is best?
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Subtraction point

The Omneés representation could be written more generally as
follows:

F(t) = P'(t)Q(t,to)

_ / t—t0 [ / 5(t,)
_ P(t)@xp{ . /4Mzrdt<t'—to><t'—t>} ’

[Exercise: show that the ratio P(t)Q(t)/P'(t)Q2(t, to) is a
rational function.]

This opens up a new degree of freedom in improving the chiral
representation:

U

r°(t) = (1 4 b5@¢) exp {A(4)(t, to) — A® (0, to)}

Which tg is best?
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Exercises

1. Show that:
A(t, to) — A0, t0) = A(2)

(Yes, in the previous transparency | was cheating!)

2. Show that without a constraint like I'(0) = 1, | do have an
extra freedom in choosing the subtraction point ¢y:

F(s) = (a + bt)Q(t) # (a + bt)Q(t, to)

3. And that a shift in ¢y generates an effect of higher chiral order
in the polynomial (a + bt).
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Re(F(s)/F(0))

O'90.0 | 012 | 024
E.. (GeV)
Re(F(s)/F(0))

—— Exact form factor, sol. B
---- MOR —8oto one loop, set | '
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Determination of the low energy constants — |

The degree of the polynomial P(t) in the Omnés solution is
determined by the behaviour of F'(t) at infinity. Suppose we
knew a constant would be enough for the scalar form factor:

L(t) = Q(t)

Comparing this to the chiral representation we get:

1, 5 . 1., 1 M? 13 0
- — — |1 — 1 s O(M
1 [ S(t
L ()
T 4M72r t12

A sum rule for 15 ().
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Determination of the low energy constants — ||

Consider the vector form factor of the pion:

(7' (p1) g vuq| 7 (p2)) = i€ Fy(t) , q= < Z )

It satisfies a dispersion relation:

t [ dt'lmFy(t)

T Ja2 't —t

Which implies that the charge radius of the pion is given by the
following sum rule:

1, 5 . 1|, 1 M? 0
HUBHIIE I [lﬁm T <1n?+1> +o<MW>]
— l/oo gm v ()
T 4M7% tlZ
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Resonance contribution to the sum rule

The p resonance will certainly contribute to the integral. In the
narrow width approximation:

Im Fy () ~ w8(t — M)
we can evaluate:

_ fF, 1

1 2\ T
Tl ="m e
™ p

Using the following estimate for the two coupling constants:
F, = 144 MeV f =69 MeV

we obtain

I5(M,) = —13.3 x 10~°
whereas if we extract it from the measured value of the charge
radius, we obtain:

I5(M,) = —(13.5 + 2.5) x 10°
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Resonance saturation

Table 1: Contributions of the resonances V', A, S, S and n; to the constants L in units

of 1073,
i | 10°L7(M,) vV A S S1 n Total
1 0.7 + 0.5 0.6 0 —-0.2 0.2% 0 0.6
2 1.3+ 0.7 1.2 0 0 0 0 1.2
3 | —4.4425 —3.6 O 0.6 0 0 —3.0
4 | —0.3+0.5 0 0 —0.5 0.5 0 0.0
5 1.4+ 0.5 0 0 1.4% 0 0 1.4
6 | —0.24+0.3 0 0 —0.3 0.3 0 0.0
7 | —0.440.2 0 0 0 0 —0.3 | —0.3
8 0.9+ 0.3 0 0 0.99 0 0 0.9
9 6.9 + 0.7 6.9 0 0 0 0 6.9
10 | =5.54+0.7 ~10.0 4.0 O 0 0 —6.0
%) |nput. %) Estimate based on the limit N, — oo.

Ecker, Gasser, Pich, de Rafael ('89)
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CHPT 3 — Summary

e The finite, analytically nontrivial part of the one loop
integrals automatically generates the correct imaginary parts,
as required by unitarity.

e Effective quantum field theory is a systematic method to
generate a perturbative solution of dispersion relations.

e In some cases it may be convenient to generate a better
approximation to the exact solution of the dispersion relation,
and merge that with CHPT. If done properly the combination
of the two approaches is very powerful.

e Dispersion relations offer a perfect framework to take into
account the contributions of resonances: these give a good
quantitative explanation of the values of the low energy
constants.
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