Introduction to Chiral Perturbation Theory – III

One loop: Unitarity and Analyticity

Gilberto Colangelo

Institut für Theoretische Physik der Universität Zürich

Frascati – 15-19 May 2000

Outline of Lecture 3

- Dispersion relation for the scalar form factor of the pion
- Chiral counting on the dispersion relation
- Going beyond one loop CHPT with dispersion relations
- Contribution of resonances to the dispersive integrals
- Summary and conclusions of lectures 2 and 3

Dispersion relation for $\Gamma(t)$

For $t \ge 4M_\pi^2 \operatorname{Im} \Gamma(t) \ne 0$. $\Gamma(t)$ is analytic everywhere else in the complex t plane, and obeys the following dispersion relation:

$$\bar{\Gamma}(t) = 1 + bt + \frac{t^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{t'^2} \frac{\text{Im } \bar{\Gamma}(t')}{t' - t} .$$

where $\bar{\Gamma}(t) = \Gamma(t)/\Gamma(0)$.

Unitarity implies $[\sigma(t) = \sqrt{1 - 4M_\pi^2/t}]$

$$\operatorname{Im} \bar{\Gamma}(t) = \sigma(t) \bar{\Gamma}(t) t_0^{0*}(t) = \bar{\Gamma}(t) e^{-i\delta_0^0} \sin \delta_0^0$$

$$= |\bar{\Gamma}(t)| \sin \delta_0^0$$

where t_0^0 is the S-wave, isospin zero amplitude of $\pi\pi$ scattering.

Strictly speaking, the above unitarity relations are valid only for $t \leq 16 M_\pi^2$. To a good approximation, however, they hold up to the $K\bar{K}$ threshold.

Chiral counting on the dispersion relation

$$ar{\Gamma}(t) \sim 1 + O(p^2)$$

$$b \sim O(1) \left(1 + O(M_\pi^2) \right)$$

$$\delta_0^0 \sim O(p^2) \left(1 + O(p^2) \right)$$

There are two $O(p^2)$ correction to $\bar{\Gamma}$:

- 1. O(1) contribution to b;
- 2. the dispersive integral containing the $O(p^2)$ phase δ_0^0 .

Notice that the latter is fixed by unitarity and analyticity.

Are these respected by the one loop calculation?

Dispersion relation and one-loop CHPT

The full one–loop expression of $\bar{\Gamma}(t)$ reads as follows:

$$\bar{\Gamma}(t) = 1 + \frac{t}{16\pi^2 F_{\pi}^2} (\bar{l}_4 - 1) + \frac{2t - M_{\pi}^2}{2F_{\pi}^2} \bar{J}(t)$$

where

$$\bar{J}(t) = \frac{1}{16\pi^2} \left[\sigma(t) \ln \frac{\sigma(t) - 1}{\sigma(t) + 1} + 2 \right]$$

To prove that unitarity and analyticity are respected at this order is sufficient to add:

$$\delta_0^0(t) = \sigma(t) \frac{2t - M_\pi^2}{32\pi F_\pi^2} + O(p^4)$$

$$\bar{J}(t) = \frac{t}{16\pi^2} \int_{4M_\pi^2}^{\infty} \frac{dt'}{t'} \frac{\sigma(t')}{t'-t}$$

Hints

1. Subtract $\bar{J}(t)$ once more:

$$\bar{J}(t) = \frac{t}{96\pi^2} + \frac{t^2}{16\pi^2} \int_{4M_\pi^2}^{\infty} \frac{dt'}{t'^2} \frac{\sigma(t')}{t' - t}$$

2. Trick to pull out a linear term from the dispersive integral:

$$\int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \frac{t'\sigma(t')}{t'-t} = t \int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \frac{\sigma(t')}{t'-t} + \int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \sigma(t')$$

Exact solution of the dispersion relation

Mathematical problem:

- 1. F(t) is an analytic function of t in the whole complex plane, with the exception of a cut for $4M_\pi^2 \le t < \infty$;
- 2. approaching the real axis from above $e^{-i\delta(t)}F(t)$ is real on the real axis, where $\delta(t)$ is a known function.

Omnès ('58) found an exact solution to this mathematical problem:

$$F(t) = P(t)\Omega(t) = P(t) \exp\left\{\frac{t}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{t'} \frac{\delta(t')}{t'-t}\right\} ,$$

where P(t) is a generic polynomial. P(t) can only be constrained by the behaviour of the function F(t) at infinity. $\Omega(t)$ is called the Omnès function.

Combining CHPT and the Omnès representation

At order p^4 we have:

$$\Gamma_{\rm CHPT}^{(4)}(t) = 1 + b^{(2)}t + \Delta^{(2)}(t) \quad , \qquad \Delta^{(2)}(t) = \frac{t}{\pi} \int_{4M_\pi^2}^\infty \frac{dt'}{t'} \frac{\delta^{(2)}(t')}{t' - t}$$

It is easy to imagine how to improve the above representation. A few proposals:

$$\Gamma^{\alpha}(t) = (1 + b^{(2)}t)e^{\Delta^{(2)}(t)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma^{\beta}(t) = (1 + b^{(2)}t)e^{\Delta^{(4)}(t)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma^{\gamma}(t) = (1 + b^{(2)}t)e^{\Delta_{\text{phys}}(t)}$$

Which one is best?

Subtraction point

The Omnès representation could be written more generally as follows:

$$F(t) = P'(t)\Omega(t, t_0)$$

$$= P'(t) \exp\left\{\frac{t - t_0}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\delta(t')}{(t' - t_0)(t' - t)}\right\} ,$$

[Exercise: show that the ratio $P(t)\Omega(t)/P'(t)\Omega(t,t_0)$ is a rational function.]

This opens up a new degree of freedom in improving the chiral representation:

Which t_0 is best?

Spring School 2000 8

Exercises

1. Show that:

$$\Delta(t, t_0) - \Delta(0, t_0) = \Delta(t)$$

(Yes, in the previous transparency I was cheating!)

2. Show that without a constraint like $\bar{\Gamma}(0) = 1$, I do have an extra freedom in choosing the subtraction point t_0 :

$$F(s) = (a + bt)\Omega(t) \neq (a + bt)\Omega(t, t_0) .$$

3. And that a shift in t_0 generates an effect of higher chiral order in the polynomial (a + bt).

$\operatorname{Re}(F_{\pi}^{S}(s)/F_{\pi}^{S}(0))$

Spring School 2000

Determination of the low energy constants - I

The degree of the polynomial P(t) in the Omnès solution is determined by the behaviour of F(t) at infinity. Suppose we knew a constant would be enough for the scalar form factor:

$$\bar{\Gamma}(t) = \Omega(t)$$

Comparing this to the chiral representation we get:

$$\frac{1}{6} \langle r^2 \rangle_S^{\pi} = \frac{1}{F_{\pi}^2} \left[l_4^r(\mu) - \frac{1}{16\pi^2} \left(\ln \frac{M_{\pi}^2}{\mu^2} + \frac{13}{12} \right) + O(M_{\pi}^2) \right]
= \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\delta(t')}{t'^2}$$

A sum rule for $l_4^r(\mu)$.

Determination of the low energy constants - II

Consider the vector form factor of the pion:

$$\langle \pi^i(p_1) | ar{q} au^k \gamma_\mu q | \pi^j(p_2)
angle = i \epsilon^{ikj} F_V(t) \;\; , \qquad q = \left(egin{array}{c} u \ d \end{array}
ight)$$

It satisfies a dispersion relation:

$$F_V(t) = 1 + \frac{t}{\pi} \int_{4M_\pi^2}^{\infty} \frac{dt'}{t'} \frac{\text{Im } F_V(t')}{t' - t}$$

Which implies that the charge radius of the pion is given by the following sum rule:

$$\begin{split} \frac{1}{6} \langle r^2 \rangle_V^\pi &= -\frac{1}{F_\pi^2} \left[l_6^r(\mu) - \frac{1}{96\pi^2} \left(\ln \frac{M_\pi^2}{\mu^2} + 1 \right) + O(M_\pi^2) \right] \\ &= \frac{1}{\pi} \int_{4M_\pi^2}^\infty dt' \frac{\text{Im } F_V(t')}{t'^2} \end{split}$$

Resonance contribution to the sum rule

The ρ resonance will certainly contribute to the integral. In the narrow width approximation:

$$\operatorname{Im} F_V(t) \sim \pi \delta(t - M_{\rho}^2)$$

we can evaluate:

$$\frac{1}{6} \langle r^2 \rangle_V^{\pi} = \frac{f F_{\rho}}{F_{\pi}^2} \frac{1}{M_{\rho}^2}$$

Using the following estimate for the two coupling constants:

$$F_{\rho} = 144 \, {\rm MeV} \; , \qquad f = 69 \, {\rm MeV}$$

we obtain

$$l_6^r(M_\rho) = -13.3 \times 10^{-3}$$

whereas if we extract it from the measured value of the charge radius, we obtain:

$$l_6^r(M_\rho) = -(13.5 \pm 2.5) \times 10^{-3}$$

Resonance saturation

Table 1: Contributions of the resonances V, A, S, S_1 and η_1 to the constants L_i^r in units of 10^{-3} .

i	$10^3 L_i^r(M_{ ho})$	V	A	S	S_1	η_1	Total
1	0.7 ± 0.5	0.6	0	-0.2	$0.2^{b)}$	0	0.6
2	1.3 ± 0.7	1.2	0	0	0	0	1.2
3	-4.4 ± 2.5	-3.6	0	0.6	0	0	-3.0
4	-0.3 ± 0.5	0	0	-0.5	$0.5^{b)}$	0	0.0
5	1.4 ± 0.5	0	0	$1.4^{a)}$	0	0	1.4
6	-0.2 ± 0.3	0	0	-0.3	$0.3^{b)}$	0	0.0
7	-0.4 ± 0.2	0	0	0	0	-0.3	-0.3
8	0.9 ± 0.3	0	0	$0.9^{a)}$	0	0	0.9
9	6.9 ± 0.7	$6.9^{a)}$	0	0	0	0	6.9
10	-5.5 ± 0.7	-10.0	4.0	0	0	0	-6.0

a) Input.

Ecker, Gasser, Pich, de Rafael ('89)

Spring School 2000

 $^{^{}b)}$ Estimate based on the limit $N_c o \infty$.

CHPT 3 – Summary

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations.
- In some cases it may be convenient to generate a better approximation to the exact solution of the dispersion relation, and merge that with CHPT. If done properly the combination of the two approaches is very powerful.
- Dispersion relations offer a perfect framework to take into account the contributions of resonances: these give a good quantitative explanation of the values of the low energy constants.

Spring School 2000