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Why go beyond O(p?)? Why loops?

e Why not? Chiral Symmetry forbids O(p°) interactions
between pions, but allows for all higher orders.

e Unitarity requires that if an amplitude at order p? is purely
real, at order p* its imaginary part is nonzero.
Take the mm scattering amplitude. The elastic unitarity
relation for the partial waves té of isospin I and angular
momentum £ reads:

AM?
/mt§:\/1— e | (1)

S

e The correct imaginary parts are generated automatically by
loops.

e The divergences occuring in the loops can be disposed of just
like in a renormalizable field theory.
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Effective field theory

The method of effective quantum field theory provides a rigorous
framework to compute Green functions that respect all the good
properties we require: symmetry, analyticity, unitarity.

The method yields a systematic expansion of the Green functions
in powers of momenta and quark masses.

In the following two lectures | will discuss in detail how this
works when you consider loops:

e In lecture 2 | will consider the divergent part of the loops and
discuss how the renormalization program works.

e In lecture 3 | will consider the finite, analytically nontrivial
part of the loops and discuss in detail its physical meaning.

Spring School 2000 2



CHPT -2 Frascati — 15-19 May 2000

Outline of Lecture 2

e One-loop graphs in the scalar form factor of the pion.

e Renormalization of the scalar form factor to one loop.

e IR divergences: chiral logs.

e Generating functional.

e Chiral invariant renormalization.
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Scalar form factor of the pion

(m'(p1)7 (p2) | (Gu+dd)|0) =: 6V (t) , t= (p1+p2)° ,

At tree level:
I'(t) = 2mB = M> 4+ O(p*) ,

in agreement with the Feynman—Hellman theorem:

the expectation value of the perturbation in an eigenstate of the
total Hamiltonian determines the derivative of the energy level
with respect to the strength of the perturbation:

_OM? o
m 57 = (mw|mqq|w) =T(0) .
m

This matrix element is relevant for the decay h — w7, which,
for a light higgs wold have been the main decay mode.
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One loop graphs

d4l {p2ap'l7 l2} .
N/(277)4(12—M2)((p—l)2—M2) » P=P1t D2
~ d'l 1 4 p? d*l 1
Leoie=wm TP ) enie- M (=D=M
T(M) J(p*)
T(M?) = a+bM>+T(M?
J(t) = J(0)+ J(t)

T(M?) and J(t) are finite (show this explicitly by deriving a
sufficient number of times).

I'(¢) ~ M* [1 + M 4+ tJ(0) +T(M?) + J(t)]

divergent part
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Counterterms

Ly ~ (x3)~ M’s¢’

Ls ~ {x+)°~ M's¢’, (x4)(uuut) ~ M*50,4'0"¢'

v

Y Y
T'(t) ~ M* : M3t

To remove the divergences one only needs to properly define the
couplings in the lagrangian at order O(p4).

Quote from Weinberg's book on QFT, vol. I:

“(...) as long as we include every one of the infinite number
of interactions allowed by symmetries, the so—called non—
renormalizable theories are actually just as renormalizable as
renormalizable theories.”
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Chiral logarithms

The square root of the linear term in the Taylor expansion of the
form factor gives a measure of the physical extension (*“radius”)
of the particle in question:

I'(t) = I'(0) [1 + é(ﬁ)@t + O(t2)]

o\ B d*l 1 M?
)5~ 10 = [ G~ Iy

The integral is UV divergent, but also IR divergent if M —
0. While UV divergences are removed by counterterms,
IR divergences are physical and are not cancelled by other
contributions:

lim (r°)% ~ InM* |

M2-0
the extension of the cloud of pions surrounding a pion (or any
other hadron) goes to infinity if pions become massless (Li and

Pagels '72).
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Exercises:

Calculate T'(0) and (r*)% to one loop.

1. Draw all graphs that contribute.
2. Calculate the graphs after a Taylor expansion.

3. Calculate the contribution of the relevant counterterms:

2ly
<X+>2 ; Z(“;LX’i)

I3
16

What is the divergent part of I3 and 147

4. Use two different parametrizations to do the calculations:
Exponential: U = exp(i¢/F);

2
o model: U = 0'—|—’I:%,0'2-|—%= 1.
b= g7
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Chiral symmetry

To remove the divergent part in I'(¢) we have to fix the
divergent part of chiral-invariant operator of order O(p*), like

(upu) (X+)-

(u,ufy(x4) ~ M>¢°8,¢ 0% + . ..

Chiral symmetry implies that after calculating the divergent part
of I'(s) | also know the divergent part of the 6w — 67 scattering
amplitude.
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Questions:

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path integral
over a chiral invariant classical action?

2. Is there a tool that allows one to calculate the divergences
keeping chiral invariance explicit in every step of the
calculation?
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Generating functional

e Consider a system with a spontaneously broken symmetry GG.
Define the generating functional as:

e — Z%/dxl...dxnf/jll S R (o1l o S £l [V I
n=0 """

where J;i are the Noether's currents associated to the
spontaneously broken symmetry G of the system, and f/
external fields coupled to them.

e The generating functional is invariant under gauge transformations
of the external fields:

ZiT(g)f} = Z{f} >

where:

T(g9)fu= D(gw)fu(m)D_l(gw) - iauD(gw)D_l(gw)

e What is the most general way of constructing an invariant
generating functional out of a path integral over the Goldstone
boson degrees of freedom?
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Leutwyler’s theorem

For Lorentz—invariant theories in 4 dimensions, a path integral
constructed with gauge—invariant lagrangians is a necessary
and sufficient condition to obtain a gauge—invariant generating
functional.

The theorem also includes the case in which the symmetry is
anomalous (like the U (1) 4 symmetry), and the case in which the
symmetry is spontaneously broken.
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Background field method — |

Take a O(IN) symmetric lagrangian of scalar fields:

L = Lo+ io: h"L,
n=1
Lo = o (aui0re' — M) — 2 (99) — o'

The generating functional is constructed via the path integral:

2 — N / [dple™™ S = / dz L

Z = Zo+hZ +hZy+ OR®) ,Z{0} =0

The classical equations of motion for the field ¢*:

=0 = (M4 O)F 4 9P f =0
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Background field method — Il

Shift in the integration variable:

o= +¢ ,  [do]=[de] , £=0®n"?

After the shift the path integral becomes:

. & ) 1 . ;

o = — (M +g8”) 6 — 298¢

The first quantum correction to the generating functional has a
compact explicit expression:

7y = /d:c [% In (Di;Doj;') + 51] ,

where Do = D)|s—.

Spring School 2000 14



CHPT -2 Frascati — 15-19 May 2000

Heat kernel

The UV divergent part of In(D Dy ') also has a compact explicit
expression, obtained with the heat kernel formalism:

Given a differential operator of the form:
D2:—d2+0'7 du:8u+7u7

its divergent part has the following expression:

DAY = v 1 pv 2
/d:r; In (DzJDOij ) = (Am)2(d — 4) /d:v [67”V7 + o :|-|—. .

In the case of the O(IV) theory that we are considering v, = 0
and:

0% = 2(N + 2)gM?*¢*> + (N + 8)g°¢’
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Application to CHPT

It is convenient to expand around the classical solution as follows:

U = ae“’Fq

Transformation properties:

U — gRUg};:gRuhThug};

eif/F N heig/FhT

Expansion of L5 around the classical solution:

2
/dmﬁg /me(uuu”+X+)

— /da:[,_Q +/dm%§iAij§j + 0(63)
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Exercises
1. Calculate A;j.
Solution:
2
A = —d+o
du,ij = Oulij + Yy, ij
1
Yu,ij — _5<[>‘z7 AJ]PM>
1
r, = 5 {ut(ﬁu —iry)u + u(0, — ilu)uT}
1

2. Calculate the divergent part of In AAgl.
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CHPT 2 — Summary

e Including loops is necessary if we want to respect unitarity.

e The UV divergences encountered in loop integrals can be
removed according to standard renormalization methods.

e Some loop integrals have also an IR singular behaviour which
has a very clear physical meaning, and again shows the
necessity of taking loop effects into account.

e As an illustration of these concepts | have considered the
scalar form factor of the pion at one loop level.

e | have introduced the generating functional of Green functions
of Noether currents. This is a central object in the theoretical
analysis of systems that undergo a spontaneous symmetry
breaking.

e leutwyler has proved that doing a path integral over an
effective lagrangian is the most general way to construct a
symmetric generating functional.

e Finally, | have introduced some technical tools (background
field method and heat kernel) to perform an explicitly chiral
invariant renormalization of the theory.
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