Introduction to Chiral Perturbation Theory – II

One loop: renormalization

Gilberto Colangelo

Institut für Theoretische Physik der Universität Zürich

Frascati - 15-19 May 2000

Why go beyond $\mathcal{O}(p^2)$? Why loops?

- ullet Why not? Chiral Symmetry forbids $O(p^0)$ interactions between pions, but allows for all higher orders.
- Unitarity requires that if an amplitude at order p^2 is purely real, at order p^4 its imaginary part is nonzero. Take the $\pi\pi$ scattering amplitude. The elastic unitarity relation for the partial waves t_ℓ^I of isospin I and angular momentum ℓ reads:

$${\it Im}\,t_{\ell}^{I} = \sqrt{1 - {4M_{\pi}^{2} \over s}} |t_{\ell}^{I}|^{2} \ .$$
 (1)

- The correct imaginary parts are generated automatically by loops.
- The divergences occurring in the loops can be disposed of just like in a renormalizable field theory.

Effective field theory

The method of effective quantum field theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity.

The method yields a systematic expansion of the Green functions in powers of momenta and quark masses.

In the following two lectures I will discuss in detail how this works when you consider loops:

- In lecture 2 I will consider the divergent part of the loops and discuss how the renormalization program works.
- In lecture 3 I will consider the finite, analytically nontrivial part of the loops and discuss in detail its physical meaning.

Outline of Lecture 2

- One-loop graphs in the scalar form factor of the pion.
- Renormalization of the scalar form factor to one loop.
- IR divergences: chiral logs.
- Generating functional.
- Chiral invariant renormalization.

Scalar form factor of the pion

$$\langle \pi^{i}(p_1)\pi^{j}(p_2)|\hat{m}(\bar{u}u+\bar{d}d)|0\rangle =: \delta^{ij}\Gamma(t) , \quad t = (p_1+p_2)^2 ,$$

At tree level:

$$\Gamma(t) = 2\hat{m}B = M_{\pi}^2 + O(p^4)$$
,

in agreement with the Feynman-Hellman theorem:

the expectation value of the perturbation in an eigenstate of the total Hamiltonian determines the derivative of the energy level with respect to the strength of the perturbation:

$$\hat{m}\frac{\partial M_{\pi}^{2}}{\partial \hat{m}} = \langle \pi | \hat{m}\bar{q}q | \pi \rangle = \Gamma(0) .$$

This matrix element is relevant for the decay $h \to \pi\pi$, which, for a light higgs wold have been the main decay mode.

One loop graphs

$$\sim \int \frac{d^4l}{(2\pi)^4} \frac{\{p^2, p \cdot l, l^2\}}{(l^2 - M^2)((p - l)^2 - M^2)} , \quad p = p_1 + p_2$$

$$\sim \underbrace{\int \frac{d^4l}{(2\pi)^4} \frac{1}{(l^2 - M^2)}}_{T(M^2)} + p^2 \underbrace{\int \frac{d^4l}{(2\pi)^4} \frac{1}{(l^2 - M^2)((p - l)^2 - M^2)}}_{J(p^2)}$$

$$T(M^2) = a + bM^2 + \bar{T}(M^2)$$
$$J(t) = J(0) + \bar{J}(t)$$

 $\bar{T}(M^2)$ and $\bar{J}(t)$ are finite (show this explicitly by deriving a sufficient number of times).

$$\Gamma(t) \sim M^2 \left[1 + \underbrace{bM^2 + tJ(0)}_{\text{divergent part}} + \bar{T}(M^2) + \bar{J}(t) \right]$$

Spring School 2000 5

Counterterms

$$\mathcal{L}_2 \sim \langle \chi_+ \rangle \sim M^2 s \phi^2$$

To remove the divergences one only needs to properly define the couplings in the lagrangian at order $O(p^4)$.

Quote from Weinberg's book on QFT, vol. I:

"(...) as long as we include every one of the infinite number of interactions allowed by symmetries, the so-called non-renormalizable theories are actually just as renormalizable as renormalizable theories."

Spring School 2000 6

Chiral logarithms

The square root of the linear term in the Taylor expansion of the form factor gives a measure of the physical extension ("radius") of the particle in question:

$$\Gamma(t) = \Gamma(0) \left[1 + \frac{1}{6} \langle r^2 \rangle_S^{\pi} t + O(t^2) \right] .$$

$$\langle r^2 \rangle_S^{\pi} \sim J(0) = \int \frac{d^4 l}{(2\pi)^4} \frac{1}{(l^2 - M^2)^2} \sim \ln \frac{M^2}{\Lambda^2}$$
.

The integral is UV divergent, but also IR divergent if $M \rightarrow 0$. While UV divergences are removed by counterterms, IR divergences are physical and are not cancelled by other contributions:

$$\lim_{M^2 \to 0} \langle r^2 \rangle_S^{\pi} \sim \ln M^2 ,$$

the extension of the cloud of pions surrounding a pion (or any other hadron) goes to infinity if pions become massless (Li and Pagels '72).

Spring School 2000 7

Exercises:

Calculate $\Gamma(0)$ and $\langle r^2 \rangle_S^{\pi}$ to one loop.

- 1. Draw all graphs that contribute.
- 2. Calculate the graphs after a Taylor expansion.
- 3. Calculate the contribution of the relevant counterterms:

$$\frac{l_3}{16}\langle\chi_+\rangle^2~, \frac{il_4}{4}\langle u_\mu\chi_-^\mu\rangle~.$$

What is the divergent part of l_3 and l_4 ?

4. Use two different parametrizations to do the calculations:

Exponential:
$$U = \exp(i\phi/F)$$
;

$$\sigma$$
 model: $U=\sigma+i\frac{\phi}{F}, \sigma^2+\frac{\phi^2}{F^2}=1.$

$$\phi = \phi^i \tau^i.$$

Chiral symmetry

To remove the divergent part in $\Gamma(t)$ we have to fix the divergent part of chiral-invariant operator of order $O(p^4)$, like $\langle u_{\mu}u^{\mu}\rangle\langle\chi_{+}\rangle$.

$$\langle u_{\mu}u^{\mu}\rangle\langle\chi_{+}\rangle \sim M^{2}\phi^{2}\partial_{\mu}\phi^{4}\partial^{\mu}\phi^{6} + \dots$$

Chiral symmetry implies that after calculating the divergent part of $\Gamma(s)$ I also know the divergent part of the $6\pi \to 6\pi$ scattering amplitude.

Questions:

- 1. Do we have a proof that quantum effects do not introduce violations of the chiral symmetry? Or that one can build a chiral invariant generating functional only with a path integral over a chiral invariant classical action?
- 2. Is there a tool that allows one to calculate the divergences keeping chiral invariance explicit in every step of the calculation?

Generating functional

Consider a system with a spontaneously broken symmetry G.
 Define the generating functional as:

$$e^{iZ\{f\}} = \sum_{n=0}^{\infty} \frac{i^n}{n!} \int dx_1 \dots dx_n f_{\mu_1}^{i_1} \dots f_{\mu_n}^{i_n} \langle 0 | T J_{i_1}^{\mu_1} \dots J_{i_n}^{\mu_n} | 0 \rangle ,$$

where J_{μ}^{i} are the Noether's currents associated to the spontaneously broken symmetry G of the system, and f_{i}^{μ} external fields coupled to them.

• The generating functional is invariant under gauge transformations of the external fields:

$$Z\{T(g)f\} = Z\{f\} ,$$

where:

$$T(g)f_{\mu} = D(g_x)f_{\mu}(x)D^{-1}(g_x) - i\partial_{\mu}D(g_x)D^{-1}(g_x)$$

 What is the most general way of constructing an invariant generating functional out of a path integral over the Goldstone boson degrees of freedom?

Leutwyler's theorem

For Lorentz-invariant theories in 4 dimensions, a path integral constructed with gauge-invariant lagrangians is a necessary and sufficient condition to obtain a gauge-invariant generating functional.

The theorem also includes the case in which the symmetry is anomalous (like the $U(1)_A$ symmetry), and the case in which the symmetry is spontaneously broken.

Background field method - I

Take a O(N) symmetric lagrangian of scalar fields:

$$egin{array}{lll} \mathcal{L} &=& \mathcal{L}_0 + \sum_{n=1}^{\infty} \hbar^n \mathcal{L}_n \ & & \\ \mathcal{L}_0 &=& rac{1}{2} \left(\partial_{\mu} \phi^i \partial^{\mu} \phi^i - M^2 \phi^i \phi^i
ight) - rac{g}{4} \left(\phi^i \phi^i
ight) - \phi^i f^i \end{array}$$

The generating functional is constructed via the path integral:

$$e^{iZ\{f\}/\hbar} = N \int [d\phi] e^{iS/\hbar} , \qquad S = \int dx \mathcal{L}$$
 $Z = Z_0 + \hbar Z_1 + \hbar^2 Z_2 + O(\hbar^3) , Z\{0\} = 0$

The classical equations of motion for the field ϕ^i :

$$\frac{\delta S_0}{\delta \phi^i} = 0 \qquad \Rightarrow \qquad (M^2 + \Box)\bar{\phi}^i + g\bar{\phi}^2\bar{\phi}^i + f^i = 0$$

Background field method - II

Shift in the integration variable:

$$\phi^i = \overline{\phi}^i + \xi^i \quad , \qquad [d\phi] = [d\xi] \quad , \qquad \xi = O(\hbar^{1/2})$$

After the shift the path integral becomes:

$$e^{iZ\{f\}/\hbar} = Ne^{i\bar{S}/\hbar} \int [d\xi] \exp\left\{\frac{i}{\hbar} \int dx \left[\frac{1}{2} \xi^i D_{ij} \xi^j + O(\xi^3)\right]\right\}$$

$$D_{ij} = -\Box \delta_{ij} + \sigma_{ij}$$

$$\sigma_{ij} = -\left(M^2 + g\bar{\phi}^2\right)\delta_{ij} - 2g\bar{\phi}^i\bar{\phi}^j$$

The first quantum correction to the generating functional has a compact explicit expression:

$$Z_1 = \int dx \left[\frac{i}{2} \ln \left(D_{ij} D_{0ij}^{-1} \right) + \mathcal{L}_1 \right] ,$$

where $D_0 = D_{|f=0}$.

Heat kernel

The UV divergent part of $\ln(DD_0^{-1})$ also has a compact explicit expression, obtained with the heat kernel formalism:

Given a differential operator of the form:

$$D^2 = -d^2 + \sigma \quad , \qquad d_\mu = \partial_\mu + \gamma_\mu \quad ,$$

its divergent part has the following expression:

$$\int dx \ln \left(D_{ij} D_{0ij}^{-1} \right) = \frac{i}{(4\pi)^2 (d-4)} \int dx \left[\frac{1}{6} \gamma_{\mu\nu} \gamma^{\mu\nu} + \sigma^2 \right] + \dots$$

In the case of the O(N) theory that we are considering $\gamma_{\mu}=0$ and:

$$\sigma^2 = 2(N+2)gM^2\phi^2 + (N+8)g^2\phi^4$$

Application to CHPT

$$U = e^{i\phi/F} \quad , \qquad \qquad \phi = \bar{\phi} + \xi$$

It is convenient to expand around the classical solution as follows:

$$U = \bar{u}e^{i\xi/F}\bar{u}$$

Transformation properties:

$$U \rightarrow g_R U g_L^{\dagger} = g_R u h^{\dagger} h u g_L^{\dagger}$$
$$e^{i\xi/F} \rightarrow h e^{i\xi/F} h^{\dagger}$$

Expansion of \mathcal{L}_2 around the classical solution:

$$\int dx \mathcal{L}_2 = \int dx \frac{F^2}{4} \langle u_{\mu} u^{\mu} + \chi_{+} \rangle$$
$$= \int dx \bar{\mathcal{L}}_2 + \int dx \frac{1}{2} \xi^i \Delta_{ij} \xi^j + O(\xi^3)$$

Exercises

1. Calculate Δ_{ij} .

Solution:

$$\Delta = -d^{2} + \sigma$$

$$d_{\mu, ij} = \partial_{\mu}\delta_{ij} + \gamma_{\mu, ij}$$

$$\gamma_{\mu, ij} = -\frac{1}{2}\langle [\lambda_{i}, \lambda_{j}]\Gamma_{\mu}\rangle$$

$$\Gamma_{\mu} = \frac{1}{2}\left\{u^{\dagger}(\partial_{\mu} - ir_{\mu})u + u(\partial_{\mu} - il_{\mu})u^{\dagger}\right\}$$

$$\sigma_{ij} = -\frac{1}{8}\langle [u_{\mu}, \lambda_{i}][\lambda_{j}, u^{\mu}] + \{\lambda_{i}, \lambda_{j}\}\chi_{+}\rangle$$

2. Calculate the divergent part of $\ln\Delta\Delta_0^{-1}$.

CHPT 2 - Summary

- Including loops is necessary if we want to respect unitarity.
- The UV divergences encountered in loop integrals can be removed according to standard renormalization methods.
- Some loop integrals have also an IR singular behaviour which has a very clear physical meaning, and again shows the necessity of taking loop effects into account.
- As an illustration of these concepts I have considered the scalar form factor of the pion at one loop level.
- I have introduced the generating functional of Green functions of Noether currents. This is a central object in the theoretical analysis of systems that undergo a spontaneous symmetry breaking.
- Leutwyler has proved that doing a path integral over an effective lagrangian is the most general way to construct a symmetric generating functional.
- Finally, I have introduced some technical tools (background field method and heat kernel) to perform an explicitly chiral invariant renormalization of the theory.