Flavour Physics with

Marcella Bona INFN and Torino University

for the BABAR collaboration

LNF SPRING SCHOOL 19 May 2000

Summary:

the physics perspectives:CP violation

the BaBar detector: description and perfomance studies

first results: validation of the tools for the sin(2β) measurement

CP violation in the SM

-> due to having three quark families

1/2(n-1)(n-2) indipendent phases

equation

```
V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0
```


CP phenomenology(1): three kinds of **CP**

• direct *CP* in decay:

comparison of the decay rates

 $\Gamma(P o f)$ with their CP conjugated $\Gamma(ar{P} o ar{f})$

$$A_{oldsym} = rac{\Gamma(ar{P}
ightarrow ar{f}) - \Gamma(P
ightarrow f)}{\Gamma(P
ightarrow f) + \Gamma(ar{P}
ightarrow ar{f})}$$

CP is violated if $A_{asym} \neq 0$

or considering the
decay amplitudes $|\frac{\bar{A}}{\bar{A}}| \neq 1$

necessary:

more than one amplitude
 both CP-violating phases
 and non-CP-violating phases

case of B⁰ to $K^+\pi^-$ (related to Re(ϵ'/ϵ) in the K sistem)

CP phenomenology(2):

indirect P in mixing

writing the eigenvectors of the hamiltonian

$$egin{aligned} |P_+>&=rac{1}{\sqrt{|p|^2+|q|^2}}(p|P^0>+q|ar{P}^0>)\ |P_->&=rac{1}{\sqrt{|p|^2+|q|^2}}(p|P^0>-q|ar{P}^0>) \end{aligned}$$

and solving the eigenvalue equation

interference between:

amplitudes with virtual intermediate states (M₁₂) and on-shell intermediate states (Γ_{12})

CP phenomenology(3):

In interference between mixing and decay

interfering amplitudes:

SO

A
eq 0 can be also with $|\lambda|\!=\!1, \ \Im m\lambda\!
eq 0$

golden channel J/ ψ K_s: only one amplitude

$$\Im m\lambda = sin2eta$$

Flavour Physics with BABAR

- high luminosity
- Δz measurement (asymmetric collider)
- excellent tracking and vertexing
- PID: e, μ, K, π
- neutral reconstruction and identification: γ , π^0 , K_L^0

first collision on 26th May 1999

	achieved*	design
luminosity	$2.0 \ 10^{33} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$3.0 \ 10^{33} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
# of bunches	1658	1658
positron current	1700 mA	2140 mA
electron current	920 mA	750 mA
Lumi lifetime	~120 min	~120 min
sigma y	~ 6.10 microns	~ 6.65 microns
sigma x	~ 210 microns	~ 222 microns

*not all at the same time

BaBar Recorded luminosity - 1999 + 2000

Lumi predictions:

going from 2.0 to 3.0 10^{33} cm⁻²s⁻¹ (now to the end of this run)

➡ 10 fb⁻¹ recorded by the end of this run

- Iumi taken/delivered> 90%
- dead time < 1%</p>

BABAR Detector

Marcella Bona - INFN Torino

15 μm @ 90⁰

DCH

- 80% He- 20% C₄H₁₀
- 7100 hexagonal cells
- 10 axial and stereo superlayer
- maximum drift distance
 ~11 mm

- weighted average resolution 125 μm (design: 140 μm)

Marcella Bona - INFN Torino

DIRC

144 quartz bars1.7 cm thick(in place since October)

10752 PMT in 6 m³ of purified water

0.14 X₀ @ 90⁰

Cherenkov Resolution per Track for DIRC

EMC

- 6580 CsI(Tl) crystal (5760+820)
- material in front: 0.20-0.25 X_o
- readout by 2 large area photodiodes
- liquid source for calibration in front of the crystals

IFR

- Resistive Plate Chambers

- 2 double-layer cylindrical RPC inside the coil

muon id efficiency (and fake rate from π)

Inclusive Reconstruction

J/ψ reconstruction

Data set: 1.9 fb⁻¹

σ=15 MeV

(improved to 11 MeV with the new alignment)

Particle Identification

PID with the **DIRC**

- more than $3\sigma \pi/k$ separation from 500 MeV on

Electron Identification

 $\epsilon \sim 95\%$ with contamination $\sim 2\%$

Composite with Neutrals

B decays into charmonium (L=2.2 fb-1)

Event display: $J/\psi K_s$ event

Other B decays into charmonium

(control samples for golden one)

Tagging → the other B has to identified as a B0 or an anti-B0

- lepton decays
- kaon decay products
- lepton-kaon
- jet charge (no PID used)

to be evaluated the mis-tag probability for each method!

Delta Z first look with exclusively reconstructed B's

Conclusions

- PEP II is working smoothly and routinely
 delivers luminosity > 1.7 10³³ cm⁻² s⁻¹
- design luminosity is expected to be achieved by the end of this run (August)
- BABAR has already recorded more than 7fb⁻¹ (more than 5fb⁻¹ since January)
- validation studies are going on to better understand the detector, as well as analysis studies
- with 10fb⁻¹ a first measurement of $sin(2\beta)$ is expected in the channel B⁰ ->J/ ψ K_s with an uncertainty of about 0.3